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Course Description:

This course covers the outlines of general
principles, indeterminacy and stability, shear
and moment diagrams of structures, trusses,
approximate analysis, Influence lines and
moving concentrated loads, analysis of
statically determinate structures, analysis of
statically indeterminate structures.




Course Obijectives: o

1. To impart the principles of elastic structural analysis
and behaviour of indeterminate structures.

2. Ability to idealize and analyze statically determinate
and Iindeterminate structures.

3. To enable the student to get a feeling of how real-life
structures behave.

4. Familiarity with professional and contemporary Issues.
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Student Outcomes:

The student after undergoing this course will

be able to:

1. To understand analysis of indeterminate
structures and adopt an appropriate
structural analysis technique.

2. Determine response of structures by classical,
Iterative and matrix methods.

10/5/2021 Theory of Structures-DWE-3321




I ° 4L
eXt B O O k UNIVERSITY OF ANBAR
° COLLEGE OF ENGINEERING

Structural Analysis by R. C. Hibbeler- 8" edition.

REFERENCES:

 Theory of Structures by S.P. Timoshenko and D. H. Young - 2" edition.
* Theory of Structures by Yuang Yu Hsiegh.

« Structural Analysis by Aslam Kassimali, 4t edition.

« Structural and Stress Analysis by Dr. T.H.G Megson — 2" edition, 2000.

10/5/2021 Theory of Structures-DWE-3321 7



UNIVERSITY OF ANBAR
COLLEGE OF ENGINEERING

Course
Assessement:

Term | Laboratory
Tests

S00% | oo% | 100% |- | 60.0%_

A
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Topics Covered

Syllabus

1 Introduction to structural analysis

2 Determinacy and stability of structures

3 Shear and moment diagrams of structures

4 Shear and moment diagrams of structures

5 Simple Trusses and Compound Trusses

6 Complex Trusses OR Approximate Analysis of Structures

7 Influence lines and moving concentrated loads

8 Influence lines and moving concentrated loads

9 Deflection of determinate structures

10 Deflection of determinate structures

11 Analysis of indeterminate structures- Consistent deformation method.
12 Analysis of indeterminate structures- Consistent deformation method.
13 Analysis of indeterminate structures using Slope-Deflection Method
14 Analysis of indeterminate structures using Moment-Distribution Method
15 Review
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Unit-1

Introduction to

Structural Analysis O
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1.1 Types of Structural Forms
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Suspension bridge over the Menai Strait
near Bangor, Wales [Dietrich, 1998, p. 115]

The cast-iron bridge over the
River Severn at Coalbrookdale,
England, (1776 — 79) showing
a detail of the bearing plate
[Mehrtens, 1908, p. 270]

Robling’s Niagara Bridge
[Glntheroth & Kahlow, 2005, p. 135]

11/10/2020 Theory of Structures-DWE-3321

The first home of the
Institute of Engineers
of Ways of
Communication and
the Russian Highways
Authority — Jusupov
Palace on the River

Fontanka, St.
Petersburg [Fedoroy,
2005, p. 57]
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Goltzsch Viaduct around 1850
[Conrad & Hanseroth, 1995, p. 762]

11/10/2020 Theory of Structures-DWE-3321 5
The Garabit Viaductshortly after
completion [Eiffel, 1889]
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1.2 Loads - - H = ” == I mm!lm
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Load path for a typical frame
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raft foundation
11/10/2020 Theory of Structures-DWE-3321 12
6|Page Unit-1: Introduction to Structural Analysis Dr. Zaid Al-Azzawi




(b)
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-—
One-way
spanming slabs
Two.way
spanning slabs
Distribution of loads
from slabs to
supporting beams
nnn
|'.f Beam BI *V. r,f Beam B2 }r: l'.f Beam B ‘r.
wmibormly drstrdoted loxd poit loads trangular loxd
"
'_‘rn.‘ﬂﬂ-ll‘wn.'r‘ r,f Team BS }r, ve £ Beambs }r,
wapcroidal losd ‘comblncd loads combencd loxds
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Dead Loads
Live loads

Moving loads

Impact loads

* Wind loads

* Snaw loads

* Earthquake loads
* Blast loads

* Temperature load

* Soil pressure I

* Hydrostatic load

* Centrifugal forces /
Theory of Structures-DWE-3321 = 15

I TABLE 1-1 Codes

General Building Codes

Minimum Design Loads for Buildings and Other Structures,
ASCE/SEI 7-10, American Society of Civil Engineers
International Building Code

Design Codes

Building Code Requirements for Reinforced Concrete, Am. Conc. Inst. (ACI)

Manual of Steel Construction, American Institute of Steel Construction (AISC)

Standard Specifications for Highway Bridges, American Association of State
Highway and Transportation Officials (AASHTO)

National Design Specification for Wood Construction, American Forest and
Paper Association (AFPA)

Manual for Railway Engineering, American Railway Engineering
Association (AREA)

11/10/2020 Theory of Structures-DWE-3321 16
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from Materials*

TABLE 1-2 Minimum Densities for Design Loads

Ib/ft* kN/m?
Aluminum 170 26.7
Concrete, plain cinder 108 17.0
Concrete, plain stone 144 22.6
Concrete, reinforced cinder 111 174
Concrete, reinforced stone 150 23.6
Clay, dry 63 9.9
Clay, damp 110 17.3
Sand and gravel, dry, loose 100 157
Sand and gravel, wet 120 18.9
Masonry, lightweight solid concrete 105 16.5
Masonry, normal weight 135 212
Plywood 36 57
Steel, cold-drawn 492 77.3
Wood, Douglas Fir 34 53
Wood, Southern Pine 37 58
Wood, spruce 29 45

TABLE 1-3  Miniern Design Dwad Loads*

*Reproduced with permission from American Society of Civil Enginecers
Minimum Design Loads for Buildings and Other Structures, ASCE/SEI 7-10.
Copies of this standard may be purchased from ASCE at www.pubs.asce.org.

Theory of Structures-DWE-3321

11/10/2020 17

4,GC,
OB OB K W R
wind 5
B o
T ABEE @GC,
L8 8 g gikie s
4GC,
L
plan

Theory of Structures-DWE-3321

elevation

11/10/2020

9|Page Unit-1: Introduction to Structural Analysis

Dr. Zaid Al-Azzawi




Simple Example:

The floor beam in Fig. 1-8 is used to support the 6-ft width of a
lightweight plain concrete slab having a thickness of 4 in. The slab
serves as a portion of the ceiling for the floor below, and therefore its
bottom is coated with plaster. Furthermore, an 8-ft-high, 12-in.-thick
lightweight solid concrete block wall is directly over the top flange of
the beam. Determine the loading on the beam measured per foot of
length of the beam

Using the data in Tables 1-2 and 1-3, we have

Concrete slab:  [8 Ib/(ft®+in.)](4 in.)(6 ft) 192 1b/ft
" Plaster ceiling (51b/f%)(6 ft) 30 1b/ft
Block wall 105 1b/ft7)(8 fr)(1 ft) 840 1b/ft
Total load 1062 Ib/ft = 1.06 k/ft

Here the unit k stands for “kip,” which symbolizes kilopounds. Hence,
1k = 1000 Ib.

1.3 Theory of Structural Analysis Classification

[RTVERSITY OF AVERR
COLLEGE OF ENGINEERING

Static

Dynamic

Determinate Indeterminate

2-Dimensions 3-Dimensions

Non-Elastic materials
Large deformations

Elastic materials
Small deformations

— Linear Non-Linear

10| Page Unit-1: Introduction to Structural Analysis Dr. Zaid Al-Azzawi



Phases of a
typical
engineering

project
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Tf.m !

\’ Prelimimary structural design l

|

| Estimation of londs J‘—W

safety and
serviceabality

Construction phase

Ny w—

Revised
structural
design
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S.I (System International) Units: m, N, kg, sec ﬁﬂ)

COLLEGE OF ENGINEERING

Imperial System Unites: ft, b, slug, sec
=10% N/10° mm? = N/mm?
Example: in=25.4 mm
N/mm? > psi (Ib/in?): m = 3.28 ft
lb=2.24 N
N X —1 & 2
N _ 594 ° N _ (25.4) & Kg=9.81N
mm?2 " 1 \¢ in2 2.24 in?
mm=< X (ﬂ X o
lb
= 145m—2 = 145 psi

Example: ﬁ[ﬂA

COLLEGE OF ENGlNEERING

Pcf (Ib/ft3)> kN/m?:

224,
lb = 1000 _ 979N
0079

T
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1.5 Multiplication Factors

kRilo
mega
10° = giga
10*2 = tetra
milli
micro
102 = nhano

o
o O
(0) W
[

s
S O
a
[l

1.6
Idealization
of a Structure
and Loading

Oscillating before ItsCollaps 2in 1940

Smithsonian Institution Photo No. 72-787

11/10/2020 Theory of Structures-DWE-3321
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Hinged joints

Roller support Hinged support!

*r e
Line diagram of the bridge truss

(b)
Actual bolted connection Idealized hinged connection
©
11/10/2020 Theory of Structures-DWE-3321 27
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longitudinal wind loading

Individual frames designed
as rigid-jointed in the X.Y
plane for dead/imposed and
transverse wind loads.
<=0 In the Y-Z planc bracing is
wransverse  provided  (pin-jointed) to

wind load m‘“’"‘ load yransfer the longitudinal wind
= =] forces.

longitudinal -z
wind load simple connections
L
N longitudinal
3 fwind bracing
= ] (] [] o= ]
11/10/2020 Theory of Structures-DWE-3321 28
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Multi-span Beam
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Pin-jointed
frame
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Line Disgram
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Alternative subframes for approximate
BN TR W W analyses where & is the stiffoess of the:
members.

A I ANBAS
COLLEGE OF ENGINEERING

33

y

COLLEGE OF ENGi‘NE‘ERING
N
<
Plan of typical floor
—_— Q —_—
\j E
© > Rigid-jointed
frame
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1.7 Principles of Elastic Structural Analysis

(NI ANBAS
COLLEGE OF ENGINEERING

& Stress (o)
AggrogntQCOncr‘u
Ultismate . Cement
e | Paste | Yied Plastic Failure
Yichd svem | : :
: [+ Macti | |
Progoesonnl Flastic : -
liowt | 1
I 1
I 1
~ I 1
o! + 4 . z'; > gx ! : 3
T Nkt | Sewe | Nedarg 1 g, €, Strain ()
h,ﬁ, plastcity hasdening
wgm yelding
Steel Concrete Idealized
Princip|es; 1. Linear & Elastic
2. Small displacement principle
3. Superposition
4. Equilibrium
11/10/2020 Theory of Structures-DWE-3321 35

1.8 Equilibrium and Force Systems

A- Three-dimensional equilibrium equations:

ZF\ =0

NIVE 3 Y OF ANBAI
COLLEGE OF ENGINEERING

SF=0 YF=0

y Y M,=0 DM =0 YM.=0
}.
A v
—a X Drs placem ents
- a -~
|
s
11/10/2020 Theory of Structures- 36
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1.8 Equilibrium and Force Systems ﬁﬂ}
5L fﬁiu

ANBAJ
B- Two-dimensional equilibrium equations: COLLEGE OF ENGINEERING

ZF.\'ZO ZFy:O ZM:ZO

¥l Y2
/o > X2
R1 \>R2

11/10/2020 Theory of Structures-DWE-3321 37

C- Real-Life Supports:

NIVE 3 ANBA
COLLEGE OF ENGINEERING
~weld

stiffeners

W T
- PN

£

e

=

typical “pin-supported™ connection (metal) typical “fixed-supported” connection (metal)
(a) (b)

3
%SEE aail

o
typical “roller-supported™ connection (concrete) typical “fixed-supported” connection (concn
(a) (b)
11/10/2020 Theory of Structures-DWE-3321 38
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D- Idealized Supports: Category | Type of support | Symbolic representation | Reactions Number of unknowns

1
The reaction force R acts
perpendicuar (o the supporting a o
surface and may be directed cither COLLEGE OF ENGINEERING
nto or away from the structure.
5 The magnitude of R is the
unknown,

Roller

! Rocker

- 1
) | The reaction force R acts in the
direction of the link and may be
directed either mnlo or away from
the structure. The magnitude of Ris
the mknown.

o { R, . TV 2
_ P == The reaction force R may act n any
R ‘&ﬂ R, direction. Itis usually convenent to
represent R by ils reclangular
u Hinge or components, R, and R,. The

L I magntudes of R, and R, are the
AT ? two unknowns,
R,

3

The reactions consist of two force
R ERARE components R. and R, and a
m Fixed [!:‘ . couple of moment M. The
M IR, magnitudes of R, R,, and M are
the three unknowns.

Lnk

o

Theory

NIVERSITY OF ANBAS
COLLEGE OF ENGINEERING

WAV v )

f

1.9 Stability and Indeterminacy of
Structures

B

Theory of Structur
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1.Statically determinate structures: Structures that can B
be analysed using equilibrium equations only.

2. Statically indeterminate structures: Structures can
nhot be analysed using equilibrium equations only.

3. Redundant forces: The extra reactions that exceeds
and can not be found by equilibrium equations.

11/10/2020 Theory of Structures-DWE-3321 41

1 _(\ Vo« e < rer 1 S i i
r ' 4 4-3al
™
(a)
} — _(\ COLLEGE OF ENGINEERING
t t
0. T l ' 4 i,md4-3a]
)
(b)
J =
: { € >

«©)

H
pron EON [}
()] L .L\. —.' '—.
m _ém
& & re6 i m6-3u3
Determinate Indeterminate
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Degree of Indeterminacy: ﬂﬂl
oLl

I.D = No. of Unknowns - No. Of Equations COLLEGE OF ENGINEERING

I.D = NUK - NEQ

(a) Beams:

NUK = Reactions (R)
NEQ = 3+C

r = 3n, statically determinate

r > 3n, statically indeterminate

C = No. of Conditional Equations

[.D = NUK - NEQ = R-(3+C)

11/10/2020 Theory of Structures-DWE-3321 43
Example: fﬂ
(N ANBA
(a) t COLLEGE OF ENGINEERING
r=3n=13=3(1) Statically determinate 1.D = R-(3+C) = 3-(3+0) = 0 - Determinate

(b)
r=5n=15>3(1) Statically indeterminate to the second degree  1.D = R-(3+C) = 5-(3+0) = 2 - Indeterminate 2" Degree
N - I =
(<)
r=6,n=26=3(2) Statically determinate I.D = R-(3+C) = 4-(3+1) = 0 -> Determinate

A r"" - ﬁ"

r=10,n = 3,10 > 3(3) Statically indeterminate to the first degree I.D = R-(3+C) = 6-(3+2) = 1 -> Indeterminate 1* Degree

11/10/2020 Theory of Structures-DW

44
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o

(b) Frames: Method-1 and 2 B

NUK = 6m+R A D
NEQ = 3m+3j+C

C = No. of Conditional Equations

I.D = NUK - NEQ
= 3m+R-(3j+C)

B c
Example: ﬁﬂ}

MethOd-l A D cmsseos NGINEERNG
.D = 3m+R-(3j+C)
1.D = [3(6)+3]-[3(6)+0] N

.D=21-~18 = 3 e
Method-2 | 4—‘)»4& |

r=9n=219>6,

Statically indeterminate to the

third degree Ans.
(a)

11/10/2020 Theory of Structures-DWE-3321 46
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Example:

Method-1
[.D = 3m+R-(3j+C)

I.D = [3(7)+9]-[3(8)+0]
D= 30-24 =8

e

11/10/2020

[ m
Method-2

Statically indeterminate to the

sixth degree Ans.

f

r=9n=1,

Example:

Method-1
[.D = 3m+R-(3j+C)

[.D = [3(8)+9]-[3(8)+0]
.D = 33-24 =9

Method-2

(il

COLLI EGEOF ENG! EER ING

r=18,n=3,18> 9,
Statically indeterminate to the

ninth degree Ans.
11/10/2020 Theory of Structures-DWE-3321 48
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I (b) Trusses:

NUK = m + R
NEQ = 2j

I.D = NUK - NEQ
= m+R-2j

11/10/2020 Theory of Structures-DWE-3321

Examples:

[.D = m+R-2j
.D =19 + 3 - 2(11)
[.D = 22-22 = 0 - Determinate

[.D = m+R-2j
.D =9 + 3 - 2(6)
[.D = 12-12 = O - Determinate

12/14/2020 Theory of Structures-DWE-3321 50
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Stability

11/10/2020

heory of Structures-DWE-3321

Al \[R: TY OF ANBAI
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In general, when the equations of static equilibrium are
satisfied, the structure is at rest and would say to be a STABLE
structure. When the structure, or any part of it, cannot satisfy
the equilibrium equations, it is said to be UNSTABLE!

A
M,

Fu

partial constraints

11/10/2020

Examples of Externally Unstable Structures

= A

NIVERSITY OF ANBAS
COLLEGE OF ENGINEERING

B

P Fg

concurrent reactions

(0]
A B
ll
P
A B )
Theory of Structure

f f

Fg F¢

parallel reactions
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Summary

For Beams: con.ufe\séérensl‘usénmc
R<C+3 — Unstable
R>C+3 — Stable Indeterminate

R=C+3 — Stable determinate

(a (b)
For Frames: )
3M+R<3j+C — Unstable et
3M+R>3j+C — Stable Indeterminate T
3M+R=3j+C — Stable determinate =

For Trusses:

M+R<2j — Unstable

M+R>2j — Stable Indeterminate
M+R=2j — Stable determinate

(d)

11/10/2020 Theory of Structures-DWE-3321
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Unit-2

Statically Determinate
Beams and Frames

11/11/2020 Theory of Structures-DWE-3321

2.1 Beams

/ i
11/11/2020 / f }mﬂ o
A ", ,’ _ A
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LN i '~ Beam Types ‘[/ r/[j

Secondary —
Foundation Beam: B r
Cantilever Simply
Supported Steal Beams

—— M o o e ;}. H
e =D S5

Double Cantilever Continuous [ PO SRS —

—

Propped Cantilever

11/11/2020

Secondary

Foundation beam
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Internal Loadings Developed in Structural Members

Structural members subjected to planar loads
support an internal normal force N, shear force
V, and bending moment M. To find these values

M M
at a specific point in a member, the method of
sections must be used. This requires drawing a : "
free-body diagram of a segments of the member, S s

and then applying the three equations of v ¥
equilibrium.

Always show the three internal loadings on the

section in their positive directions.

The internal shear and moment can be expressed

P
w o
as a function of x along the member by égilll l
/‘ c .
B :
% X J —X2—=

establishing the origin at a fixed point (normally
at the left end of the member, and then using
the method of sections, where the section is
made a distance x from the origin). For members
subjected to several loads, different «x
coordinates must extend between the loads.

11/11/2020

Shear and moment diagrams for structural members can be
drawn by plotting the shear and moment functions. They also
can be plotted using the two graphical relationships.

dVv dM
dx wix) dx v
Slope of} _ {Intensity of Slope of} = {Shedt
Shear Diagram Distributed Load Moment Diagram

Note that a point of zero shear locates the point of maximum
moment since:

V =dM/dx =0

11/11/2020 Theon

eory of Structures-DWE-3321
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A force acting dowhward on the beam will cause the shear
diagram to jump downwards, and a counterclockwise couple
moment will cause the moment diagram to jump downwards.

(e e i e =)

tp M
Ve My

Vg Mg

X X

Using the method of superposition, the moment diagrams for a member can
be represented by a series of simpler shapes. The shapes represent the
moment diagram for each of the separate loadings. The resultant moment
diagram is then the algebraic addition of the separate diagrams.

11/11/2020 Theory of Structures-DWE-3321 7

EXAMPLE | 1 EXAMPLE | 2

Draw the shear and moment diagrams for the beam in Fig. 4-124. “n iy Draw the shear and moment diagrams for the beam shown in Fig 4-13a
"-'}e—"—,ﬁ-ﬂf,' SOLUTION
20kN/m 100 | Support Reactions. The reactions are calculated and indicated on
20kN/m TIR--Sh
e 4 8| 1! ] l [ the free-body diagram
b PEEERRRRRRRRRY ®

r e : e R i VUL Shear Diagram. The values of the shear at the end points A
L ™) Va +1001b) and B (V4 500 Ib) are plotted. At C the shear is
(=) 30 AN AN discontinuous since there is a concentrated force of 600 1b there. The
Fig. 4-12 “0m value of the shear just to the right of € can be found by sectioning
the beam at this point. This yields the free-body diagram shown in
equilibrium in Fig. 4-13¢. This point (V 500 1b) is plotted on the

shear diagram. Notice that no jump or discontinuity in shear occurs
at D, the point where the 4000-1b+ft couple moment is applied.
Fig. 4-13b,

x(m)

Support Reactions. The reactions have been calculated and are

Moment Diagram. The moment at each end of the beam is zero,
shown on the free-body diagram of the beam. Fig. 4-12b.

Fig. 4-13d. The value of the moment at € can be determined by the
I Mot ™ method of sections, Fig. 4-13¢, or by finding the area under the shear

Shear Diagram. The end points x = 0,V = +30kN and x = 9m,
A . diagra etween A and C. Since M -0,

V = ~60kN are first plotted. Note that the shear dingram starts © \ diagram between A and C. Since My
with zero slope since w = 0 at x = 0, and ends with a slope of V negative -
W 20 kN/m M (1) A slope negative cons Mc = My + AM e = 0 + (100 1b)(10 f1)

The point of zero shear can be found by using the method of 250 1 M = 10001b-ft
sections from a beam segment of length x. Fig. 4-12¢. We require V = 0, 100
so that Also, since M 1000 Ib« ft, the moment at D is

1 «(m) ! ()
LISF, =0 30 '[:u( X )]. 0 x=520m '... LI, Mp = Mc + AMcp = 1000 1b-t + (~S00 1b)(5 1)
2 9 @ Mp = ~15001b-ft
H20 ()l

Moment Diagram. For 0 < x < 520m the value of shear is 2065) A jump occurs at point £ due 1o the couple moment of 4000 Ib- ft
positive but decreasing and so the slope of the moment diagram is also - The method of sections, Fig. 4-131, gives a value of +2500 Ib + ft just to
positive and decreasing (dM/dx = V). At x = 520 m, dM/dx = 0. e——— l) the right of D
Likewise for 520m < x < 9m, the shear and so the slope of the x 4y
moment diagram are negative increasing as indicated 30 kN L s

The maximum value of moment is at x = 520 m since dM/dx @ wom ' -
V =0 at this point, Fig. 4-124. From the free-body diagram in 4000 th-fr 20101
Fig. 4-12¢ we have T— At

’ prr— D)

1 ¢ on Sl S0

. s 1[0 520\ ] & o[ 520 0e—=308 100 I
\+ 0 N 0) + O\ o} + 0 0 Ih
L+ XM = 0 (5.20) + 3| 20( %5 )J<.)( ‘) M @ o

M = 104kN-m Fig. 4-13
11/11/2020 Iheory of Structures-DWE-3321 8
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AMPLE | 3

Draw the shear and moment diagrams for each of the beams shown in
Fig. 4-14.

9N
XAN/m
Increaning
vieny v -1-1- mp ive increasing
24N
1SAN m( 1 )1 AN
- I‘m** 3m

MOAN

V(kN) Tabd
w acgative incroasing
V slope aegative increasing
9
4 s 5
1 Vil iy
M slope negative increasing
A

— 1 (m)

M (KN'm)
6 ’ 1%

\ -30

V ncgative increasing
M slope negative increasing

|

M (KN-m)

15k
_ekm

2o

X {m)
20k

w negative constant
vx) ¥ slope negative comstam

I

M (k1)

Fig. 4-14

V positive decremsing
SOLUTION M slope positive decreasing
In each case the support reactions have been u.nlwl.m.d and are
shown in the top figures. Foll 2 the technig {in the pre-
vious examples. the shear and mumcm diagrams are shown under - 20
cach beam. Carefully notice how they were established, based on the
slope and moment, where dV/dx = w and dM/dx = V. Calculated
values are found using the method of sections or finding the areas =
under the load or shear diagrams. «)

XAMPLE | 4

The beam shown in the photo is used to support a portion of the
overhang for the entranceway of the building. The idealized model for
g on it is shown in Fig. 4-154. Assume B is
arollerand Cis |v|nnul Draw the shear and moment diagrams for the
beam.,

SOLUTION

Support Reactions. The reactions are calculated in the usual
manner. The results are shown in Fig. 4-15b.

Shear Diagram. The shear at the ends of the beam is plotted first,
eV, = Dand Ve = ~2.19 kN, Fig. 4-15¢.To find the shear to the left
of B use the method of sections for segment AB, or calculate the area
under the distributed loading diagram. i.e., AV = Vg — 0 = —10(0.75),
Vi = =7.50kN. The support reaction causes the shear o jump up
~7.50 + 1531 = 7.81 kN. The point of zero shear ¢
from the slope —10kN/m, or by proportional t
2.19/(1 = x). x = 0.781 m. Notice how the V
negative slope. defined by the constant negative distributed loading.

Moment Diagram. The moment at the end points is plotted first,

) M, = M = 0, Fig. 4-154. The values of —2.81 and 0.239 on the

moment diagram can be calculated by the method of sections, or by

finding the arcas under the shear diagram. For example, AM =

*!Illl!llllll u-,( 7.50)(0.75) = 281, My = ~281 kN-m. Likewise,
A B 3
075 m— — g e—

1531 kN 219kN
®)

show that the maximum positive moment is 0.239 kN-m. Notice
how the M diagram is formed. by following the slope, defined by the
V diagram.

VN M (KN-m)

5

*(m) (m)

0,751 m — e A L

Fig. 4-15

11/11/2020

Theory of Structures-DWE-3321 9

EXAMPLE | 5

Draw the shear and moment diagrams for the compound beam shown
in Fig. 4-16a. Assume the supports at A and C are rollers and B and £
are pin connections.

3
26Mm A3 xm

D

ko ELL

p—10n

S 1
|
b6 8 e & U6 U e ft ]

k/m

20k sk
) Yok
@k u( 0
0
f 10k
4

ok

Vi)

W2 10 16 X

1y Q)

M (k1)

s (i)
Fig. 4-16

SOLUTION 150

" w
Support Reactions. Once the beam segments are disconnected

from the pin at B, the support reactions can be calculated as shown in
Fig. 4-16b

Shoar Diagram. As usual. we start by plotting the end shear at A
and E, Fig. 4-16¢. The shape of the V diagram is formed by following
its slope, defined by the loading. Try to establish the values of shear
using the appropriate arcas under the load diagram (w curve) to find
the change in shear. The zero value for shear at x = 2 ft can cither be
found by proportional triangles. or by using statics. as was done in
Fig. 4-12¢ of Example 4-8.

Moment Diagram. The end moments M, = 60k-ft and My = 0
are plotted first, Fig. 4-16d. Study the diagram and note how the
various curves are established using dM/dx = V. Verify the numerical
values for the peaks using statics or by calculating the appropriate
areas under the shear diagram to find the change in moment.

11/11/2020

Theory of Structures-DWE-3321 10
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Typical RC Frame Building
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My

e % ()

member CH
x(m)

n

M (k)

member AC

sn
e
o
A
sn
[

Draw the moment diagram for the tapered frame shown in Fig. 4-17a Draw the shear and moment diagrams for the frame shown in

Assume the support at A is a roller and B is a pin. Fig. 4-18. Assume A is a pin, C is a roller, and B is a fixed joint
Neglect the thickness of the members.

sx »
0n
l, 0 4 Notice _that the distributed load acts over a length of
: i+ 'k 101t V2 = 14.14 ft. The reactions on the entire frame are calculated
o and shown on its free-body diagram, Fig. 4-18b. From this diagram the
free-body diagrams of each member arc drawn, Fig. 4-18¢. The
[pu——n
1t distributed loading on BC has components along BC and perpendicular
6n 10 its axis of (0.1414 k/ft) cos 45 (0.1414 k/ft) sin 45° ~ 0.1 k/ft "
| i4 as shown. Using these results, the shear and moment diagrams are
‘f also shown in Fig, 4-1% |
)
ok o1m
h sk I )
e & et ! -—k
7 «
\skn t '*l
] pa— S
e T, A\t Y ’
ok
¥
OISR MYIAan) « 2k 05k
nn
Support Reactions. The support reactions arc shown on the
frec-body diagram of the entire frame, Fig. 4-175. Using these results.
the frame is then sectioned into two members, and the internal reac
tions at the joint ends of the members are determined, Fig. 4-17c
Note that the external -k load is shown only on the free-body diagram R 5
of the joint at € & <) i
Moment Diagram. In accordance with our positive sign convention " 1 7
and using the techniques discussed in Sec. 4-3, the moment diagrams | 2
for the frame members are shown in Fig. 4-174 . ™)

Theory

6|Page
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EXAMPLE | 8

Draw the shear and moment diagrams for the frame shown in Fig. 419
Assume A is a pin. C is a roller, and B is a fixed joint

50 kN

|\ AN'm
P
144N m\\’\’”
\\)>>" -
Support Reactions. The free-body diagram of the entire frame is Moem
shown in Fig. 4-195 ¢
;:\‘ulu:r: .'.n Il‘«| are mum..m:::_ s a check. c..mmmm,n‘
satisfied ot joint B, which is also shown in the figure
Shear ;ll‘\d Moment Diagrams. Ih.»u:n-pnmn{ of the \h\l‘nl‘l»unl 2
I:: T---;uk\\uln{n-l."n)||u”|‘lll?.: :";I‘F.‘I Mn:.\. iated 2 ..:m 2 (=)
11/11/2020 Theory of Structures-DWE-3321 13
Example -9
An asymmetric portal frame is supported on a 1I2KN 16 kN/m 12 kN
roller at A and pinned at support D as shown .
in Figure below. For the loading indicated: B C I6kN
i) determine the support reactions and,
ii) sketch the axial load, shear force and 6 kN/m g
bending moment diagrams. E -
Solution:
Apply the three equations of static equilibrium to A D . Hy
the force system A 50m | 30m ° ,
' D
+ve $3F,=0 Va=12.0-(16.0 x 5.0~ 12,0+ V=0 $0m
tve — ZF =0 (6.0x4.0)+16.0+ Hp=0
+ve ) IM =0 (6.0 x 4.0)(2.0) + (16.0 x 5.0)(2.5) + (12.0 x 5.0) + (16.0 x 4.0)
- (Vpx8.0)=0
From cquation (2): 40,0+ Hy=0 S Hy==400 kN =—
From equation (3):  372.0-8.0/,=0 s Vp=+46.5 kN f
From equation (1): ¥, - 1040 +46.5=0 S Vy=+515KkN f
11/11/2020 Theory of Structures-DWE-3321 14
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Assuming positive bending moments induce tension inside the frame:

MB= —(6.0x4.0)(2.0)= —48.0 kN.m
MC= +(46.5%3.0)—(40.0x4.0)= —20.50 kN.m

. 48.0KkNm 16 kN'm 20,50 KNm
F, !
F; B "
480 kNm F Fe C

6kN'm

Member forces

ST.50 KN

11/11/2020 heory of Structures-DWE-332

480KNm  16KN/im  20.50 KNm
)

The values of the end-forces F1 to F8 can be
determined by considering the equilibrium of
each member and joint in turn.

Fe

Member forces

Consider member AB:

sve fEF, =0 +57.50-F =0

L Fi=5150kN |
tve—e L =0 +(6.0x4.0)-F=0

S F3=240kN <

Consider joint B:

+ve fEF =0

- I'.| : Fj ==120
4ve == XF, =0
~Fy+Fy=0

11/11/2020

There is an applied vertical load at joint B = 12 kN l
n Fy=4550kN |

S Fi=240kN —»

8|Page
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Consider member BC:

tvefEF =0  +455-(16.0x5.0)+Fs=0
tve—s SR =0 +240-F,=0

Consider member CD:

tve fEF =0 4465-F3=0
tve—= SF, =0 -40.0+F=0

Check joint C:

+ve } £F,
+Fs=-F;=+345-465=-12.0
+ve —» LF,
~Fe+ Fsg=-24.0+40.0=+16.0

11/11/2020

480 kNm 16kN/m 20,50 KNm

F
480 kN

~Fs=345kN | .
5 Fe=200kN <= b

B
Fs Fy ¢

Member forces

ST.50RN

S Fs=46.5kN
S Fs=400kKN -

There is an applied vertical load at joint C = 12 kN ‘

There is an applied horizontal at joint C = 16 kN —

Theory of Structures-DWE-3321

Member CD:
« = tan”'(4.0/3.0) = 53.13°
Cos = 0.60; Sina=0.80

Assume axial compression to be positive.
At joimt C

Similarly at joint D
Axial force = + 61.2 kN
Shear force =+ 4.10 kN

45.50 KN~

~___

Axial force = + (40.0 x Cosar ) + (46.50 x Sinar) = + 61.2 kN
Shear force = + (40.0 x Sina ) - (46.50 x Cosar ) = + 4. 10 kN

410 KN

B j 24.0kN .
S -
x4 (45.50/16.0) = 284 m

/
l

/

Shear Force Diagram

———

11/11/2020

. 480KNm  16KN'm  20.50 KNm
Fy & Fe
B c
F Fs

240N compression

Axial Load Diagram

Maximum bending moment:
M = =480+ (0.5 x 2.84)(45.50)
= 16.61 kNm

Bending Moment Diagram

Theory of Structures-DWE-3321
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12 kN/m
Lt
IS5 kN

Example -10

A pitched-roof portal frame is pinned at
supports A and H and members CD and DEF
are pinned at the ridge as shown in Figure 5.6. .
For the loading indicated: e
i) determine the support reactions and | a
ii) sketch the axial load, shear force and s | - $kN
bending moment diagrams. E —

30m

3.0m

Solution: o e

Apply the three equations of static =
equilibrium to the force system in l__40m 30m_ | 3o0m [P,
addition to the £ moments at the pin = 0: { 10.0m

+ve $£F, =0

Va=15.0 = (12.0 x 4.0) - 25.0 - 35.0 = 20.0 + ;= 0
+ve —> TF, =0
Hy+12.0+8.0+5.0+8.0+ Hy=0

+ve ) EM, =0

11/11/2020 heory of Structures-DWE-3321 19

(12.0 x 2.5) + (8.0 x 5.0) + (12.0 x 4.0)(2.0) + (25.0 x 4.0) +(35.0 x 7.0) e Y
+(20.0 x 10.0) + (5.0 x 5.0) + (8.0 x 2.0) ~ (Hy x 1L.O) - My x 10.0)=0 s L™ ™ il in
#ve ) EMy, =0 (right-hand side)

+(35.0x3.0)+ (20,0 x 6,0) = (5.0 x 2,0) = (8.0 x 5.0) = (Hy; x 8.0) = (V;x6.0)=0 =
From Equation (3): +752.0 - Hy - 10.0V3=0
From Equation (4): +175.0 - 8.0/}, - 6.0V,,=0 } 40m J.u;:)""':‘ {30m: 3

Solve equations 3(a) and 3(b) simultancously: Vyy=+78.93 kN § Hy =~37.30 kN =~
From Equation (2): H,+33.0+ ;=0 H.=+430 KN -+
From Equation (1): V- 143.0+ V4=0 Vi=+64.07 kN

My =~ (430 x2.5)=~10.75 kNm

Me=-(430x5.0)-(12.0 x 2.5) =~ 51.50 kNm

Mp = zero (pin)

Mg ==(20.0 x 3.0) + (5.0 x 1.0) + (8.0 x 4.0) - (37.3 x 7.0) +(78.93 x 3.0)
=—-47.31 kNm

M=+ (8.0 x3.0)-(37.30 x 6.0) = - 199.80 kNm

Mg =-(3730x3.0)=~-111.90 kNm

11/11/2020 Theory of Structures-DWE-3321 20

9
20 m

50m
-
»
Zz
%
6.0m

1.0m
"

P o
64.07 kN A\ 37.30 kN
|
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12 KN/m
RLLLOR AL

Fe
SLSKNm
Fi
F.l
F, +C The values of the end-forces F1 to Fi JA
AL F12 can be determined by 199.80 kKNm
$1.5kNm considering the equilibrium of each
member and joint in turn.
S0OLN
b N
120KN 2 G >
Member Forces
430kN N
JORN LA 130N |
64.07 LNI
7893 kN

11/11/2020 Theory of Structures-DWE-3321 21

Consider member ABC:
+ve '.‘:F, =0 +64.07 - Fi=0 S Fi=64.07 kN
tye=—eYE =0 +430+120-F=0 S Fy=1630kN -
Consider Joint C:

e f IFy=0 There is an applicd vertical load at joint C = IS kN l

~Fy+F3=-150 n Fy=4907kN ¢}

tve == EF, =0 There is an applied horizontal load at joint C = § kKN —

-+ Fy=+80 W Fi=2430kN —
Consider member CD:

e bEF =0 +49.07-(120x4.0)+ Fi=0 n Fe==107kN |}

tve=e X =0 +2430-F:=0 S Fe=2430kN -
Consider member FGH:

welsh=0  +7893-F,=0 s Fy=T1893kN |

tve =+ XF =0 -3730+8.0+F;;=0 5 Fr2=2930kN —

11/11/2020 Theory of Structures-DWE-3321
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Consider Joint F:

+ve }EF, =0 There is an applied vertical load at joint F = 20 kN }

Fu+F, =-200 5 Fe=35893 kN '

tyve == LF, =0 There is an applied horizontal load at joint F = SKN —

+Fa=-Fpe=+350 S Flo= 2430 kKN =
Consider member DF:

sve f £Fy = +5893 350+ F;=0 LF=2393kN |

twe=—e TP =0 -2430+Fs=0 S Fs= 2430 kN —

The calculated values can be checked by considering the equilibrium at joint D.

12 KN'm —— D 2430kN 430KN D
OO Y

S1L.SKNm
LO7 kN

tve—e IF, ~2430+42430=0

+ve 'ZF, = 1,07 -2393=-250kN (equal to the applied vertical load at D).

11/11/2020 Theory of Structures-DWE-3321

N
w

@ = tan”"(2.0/4.0) = 26.565°
Member CD: Cosa=0.894:  Sina=0447
Assume axial compression to be positive.
At joint C
Axial force = + (24.30 x Cosar ) + (49.07x Sinar ) = + 43.66 KN
Shear force = = (24.30 x Sina ) + (49.07x Cosar ) = + 33.01 kN

49.07kN

At joint D
2430aN  Axial force = + (24.30 x Cosa ) + (1.07x Sina ) = + 22,20 kN
Shear force = — (24.30 x Sinaz ) + (49.07x Cosar ) = - 9.91 kN

0= tan™'(2.0/6.0) = 18.435°
Cos 0= 0.947; Sin @~ 0316

Member DEF: 2430 kN

Assume axial compression 1o be positive.

At joint D

BIIRN Axial force = + (24.30 x Cos@) + (23.93x Sin@) = + 30.57 kN
Shear force = + (24.30 x Sin@) - (23.93 x Cosf) = + 1498 KN

0N Aq joint F

Axial foree = +(24.30 x Cos@) + (58.93x Sinf) =+ 41.63 kN
Shear force = - (24.30 x Sin@) + (58.93x Cos@) = + 48.13 kN

SB93AN
11/11/2020 Theory of Structures-DWE-3321 24
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2220 kN
pressi ks 991 kN P
s 4163 KN
43.66 kN D compression 14.98 kN
compression ( \\ 33.01 kN 4
— E \‘;\\\fj Cl 11630 kN 48.13 kN 29.30 kN
48.13KN
£
Z E B Axial Load Diagram B [~ 1630 kN
SE G § G 37.30 kN
o P
3¢ g g Shear Force Diagram
A 3 H Al 430y
= N zero "l [37.30kN
}ym.so KN
s1.50 knm ([P "
=
=
=
]
i
10.7SkNm § B Bending Moment Diagram
E ¢ 111.90 KNm
zero | A
H §zero
11/11/2020 Theory of Structures-DWE-3321 25
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Common Types of Trusses:

A truss is a structure composed of slender
members joined together at their end
points. The joint connections are usually
formed by bolting or welding the ends of
the members to a common plate, called a
gusset plate, as shown in Fig. 3-1, or by
simply passing a large bolt or pin through
each of the members.

* Planar trusses lie in a single plane and are

often used to support roofs and bridges.
Roof

Roof Trusses: Y e
Roof trusses are often used as part of an P o
industrial building frame, such as the one [
shown in Fig. 3—2 . Trusses used to support e
roofs dare selected on the basis of the span, o

the slope, and the roof material. -

Theory of Structures-DWE-3xxx

()

Types of

Roof Trusses

11/10/2020

three-hinged arch
6
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top cord Qéi
top sway <
lateral bracing 81
LU des

bracing
cing SIVERITY OF AVEY
_ COLLEGE OF ENGINEERING

portal
bracing
stringers

portal
end post

Bridge Trusses: The main structural elements of a
typical bridge truss are shown in Fig. 3—4. Here it is
seen that a load on the deck is first transmitted to
stringers, then to floor beams, and finally to the
joints of the two supporting side trusses. The top and
bottom cords of these side trusses are connected by
top and bottom lateral bracing, which serves to
resist the lateral forces caused by wind and the
sidesway caused by moving vehicles on the bridge.

11/10/2020 Theory of Structures-DWE-3xxx 5

Common Types of Bridge Trusses

(N ANBAL
COLLEGE OF ENGINEERING

Howe truss

Pratt truss

Warren truss Baltimore truss

10/11/2020 heory of Structures-DWE-3xxx 6
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Assumptions for Design: To design both
the members and the connections of a
truss, it is first necessary to determine the
force developed in each member when the C D
truss is subjected to a given loading. In
this regard, two important assumptions
will be made in order to idealize the truss.

ANBA
COLLEGE OF ENGINEERING —

\
‘o _—~ New member
A\

::::\;5 E (New joinl) S -
N New member ' t
1. The members are joined together by
smooth pins. Fy T L
2. All loadings are applied at the joints. B
3. Each truss member acts as an axial force
member, and therefore the forces acting
at the ends of the member must be
directed along the axis of the member. If
the force tends to elongate the member,
it is a tensile force (T) ; whereas if the
force tends to shorten the member, it is
a compressive force (C).
Fu T C

(a) (b) Axial Tension (c) Axial Compression

10/11/2020 Theory of Structures-DWE-3xxx

Classification of Coplanar Trusses:
Before beginning the force analysis of a truss,
it is important to classify the truss as simple,
compound, or complex, and then to be able to
specify its determinacy and stability.

Al \Eli TY OF ANBAI
COLLEGE OF ENGINEERING

1) Simple Truss: The simplest framework
that is rigid or stable is a trianale.
B

Therefore, a simple truss is constructed
starting with a basic triangular element and
connecting two members to form additional
elements. As each additional element of two
members is placed on a truss, the number of
joints is increased by one.

10/11/2020 Theory of Structures-DWE-3xxx 8
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2) Compound Truss :

This truss is formed by connecting two or
more simple trusses together. This type of
truss is often used for large spans.

simple
trusses

There are three ways in which simple trusses
may be connected to form a compound truss:

A. Trusses may be connected by a common
joint and bar.

simple -
trusses

B. Trusses may be joined by three bars.

C. Trusses may be joined where bars of a large
simple truss, called the main truss, have
been substituted by simple trusses, called secondary

simple

secondary trusses. truss

secondary
\ simple
N truss

*Compound trusses dare best analysed by
applying both the method of joints and the
method of sections. o

10/11/2020 Theory of Structures-DWE-3xxx 9

AR -
main simple truss £

Various types of compound trusses
3) Complex Truss : ’\V
A complex truss is one that cannot be classified

as being either simple or compound.

Simple truss

Complex truss

Complex truss

10/11/2020 Theory of Structures-DWE-3xxx 10
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Method of Joints:

If a truss is

equilibrium. Hence, the method of joints consists

pin at each joint of the truss.

2m

in equilibrium, then each of its joints must also be in

Al \[R: 1Y OF ANBAI
COLLEGE OF ENGINEERING

of satisfying the

equilibrium conditions Y F, =0 and Y F, = 0 and for the forces exerted on the

B
> 500 N

}4" Fj (compression)

Fy .4 (tension)

(b)

(e 5000 N

}43\

Fy, (tension)

F ¢ (compression)

Solution:

Only the forces in half the members have to be
determined, since the truss is symmetric with
respect to both loading and geometry.

Theory of Structures-DWE-3xxx

10/11/2020

(a) (c)
10/11/2020 Theory of Structures-DWE-3xxx 11
Example:
Determine the force in each
member ' of the roof truss cou SRR AN
shown in the photo. The 3kN 3kN
dimensions and loadings are
shown in the figure. State . o E
whet;her the memb?rs are in :ja/(‘()o .}, \'.\‘4 mo"\@;‘
tension or compression. P o .
/“ =0 A N 3()° 307 60 ()() ﬁ }()o '{() e D
? 4m - 4m -+ 4m 1
A.=4kN D, =4kN
! (a)

6|Page Unit-3: Analysis of Statically Determinate Trusses
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Joint A, We can start the analysis at joint A. Why?
F 46 = 8kN (C)
F,p = 6928 kN (T)

I:A(:' sin 30° = 0
8cos30° =0

+12F, =0, 4-
L 3F, =0; Fup-—
In this case note how the orientation of the x, y axes
avoids simultaneous solution of equations.

+NZF, = 0; Fgpsin60° — 3cos30° =0
Fgp = 3.00kN (C)

Joint G.

. ()

COLLEGE OF ENGINEERlNG

\ 3KN .
Wi

Determine the force in each member of the scissors
truss shown figure. State whether the members are in
tension or compression. The reactions at the supports
are given.

+/72F, =0; 8—3sin30° — 3.00cos60° — Fgr =0 /X\H’F( »
8Kk
For = 5.00kN (C) (©)
Joint B.
+ EF'\. =(0; Fpgpsin60° — 3.00sin 30° = 0
Fgr = 1.73kN (T)
FIH
B IF, =0; Fpe + 1.73¢c0s60° + 3.00cos 30° — 6.928 =0 3.00kN /
30 N 1/60°
Fpc = 346 kN (T) 6928kN B Fue
10/11/2020 Theory of Structures-DWE-3xxx (d) 13
— 175 1b f 1

COLLEGE OF ENGNEERING

7|Page Unit-3: Analysis of Statically Determinate Trusses

Solution: A,=14141b
Joint E. 2
+/'EF_‘. = () 191.0 cos 30° — Fgpsin 15° =0
- —— L

Frpp = 639.11b (C) ;. = 19101
+NIEF, =0 639.1 cos 15° — Frp — 191.0sin 30° = 0

Frprp=52181b(T) 3
Joint D. Frr -

. . . ‘T\ E 4
+/2F, = (0 —Fppsin75° =0 Fpr=20 15° 75 D
+N\ZF, =0; —Fpc+6391=0 Fpc=63911b(C) '1041 X FI)Iy\ (
191.0 1b X 639.11b
10/11/2020 Theory of Structures-DWE-3xxx (b) (C) 14
Dr. Zaid Al-Azzawi




Joint C.
B SF, =0,  Fcpsind5® — 639.1sin45° = 0 3
F _ 639.1 lb C COLLEGE OF ENGINEERING
- ) ) 17sth N 63911
+13F,=0;  —Fcp — 175 + 2(639.1) cos 45° = 0 c ¢ 200N L
Fcp = 72881b (T) Fep A%639.1 1b By
Joint B. 45°y45° Y FM\FBF
F.
+N\ZF, =0; Fppsin75° —200 =0 Fpp=207.11b(C) &6 " -
+/3SF,=0; 639.1 + 207.1cos75° — Fpy =0 y
Fpa = 692.71b (C) 6927'g
Joint A. AF
A 45°
B 5F, =0;  Fapcos30° — 692.7 cos 45° — 141.4 = 0 1414 1b 50°
F,p = 72891b (T) o
+1SF, =0; 1254 — 692.7sin45° + 7289sin30° = 0 Check )
10/11/2020 Theory of Structures-DWE-3xxx 15

Ferr
D e FDF =0 F/\B
FDF FDE (7 2]
5 X AA— X

A AN
COLLEGE OF ENGINEERING]

y
FEZF=0,Fcp=0
HNIF,=0,Fcp=0

(b)

(b)

+l(sz= 0: Fl)l"= 0

10/11/2020

F Fp
(c)
+12F,=0:Fcpsinf +0=0
F(~,« = (0 (since sin 8 # 0)

Theory of Structures-DWE-3xxx

Fae
+M3F,=0; Fypsin6 =0
F,p=0 (since sin 6 # 0)

$3F,=0;,—F,;+0=0
Fap=0

(c)

16
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Example:

Using the method of joints, indicate all the members « = g
of the truss shown in figure that have zero force. T \
[ 0
Solution: |
( | HY
Joint D. \
+1SF,=0; Fpcsin6=0 Fpc=0 | B 7
J G F

53F, =0, Fpg+0=0 Fpg=0

Joint E. y
5

. X F [ ,

(i LI\ = (; 1‘[.",: =0 = Yy
0 . _\. Frc Fria /
Joint H. Fpr D X
Fir % Frp

+72F,=0; Fyp=0 (b) i H
Joint G. P Fur \
+13F,=0; Fga=0 © .

10/11/2020 Theory of Structures-DWE-3xxx

Method of Sections:

When the method of sections is used to determine
the force in a particular member, a decision must
be made as to how to “cut” or section the truss.

Assume the forces on cut members act as

Since only three independent equilibrium Sl TORCEE o i cist
equations (YF,=0 , YF,=0 and ¥y M,=0) can be

applied to the isolated portion of the truss, try to

select a section that, in general, passes through e Aol Coprosion
not more than three members in which the forces '3/,““.,,,,,,“‘,,,“,,

are unknown.

10/11/2020

9|Page Unit-3: Analysis of Statically Determinate Trusses Dr. Zaid Al-Azzawi



Example:

Determine the force in members GJ and
CO of the roof truss shown in the photo.
The dimensions and loadings are shown
in the figure. State whether the
members are in tension or compression.
The reactions at the supports have been
calculated.

Solution: A;=0

Member GJ.

150 1b

11593 Ib

Free-Body Diagram. The force in member GJ
can be obtained by considering the section

aa . Taking the free-body diagram of
right part of this section:

(+SM; =0;  —Fgysin30°(6) + 300(3.464) = 0

Fgy = 3461b (C)

10/11/2020 Theory of Structures-DWE-3x

the

500 1b

300 Ib

300 Ib N

300 Ib

I)

30°

b o,

| ANBA
300 Ib COLLEGE OF ENGINEERING

M

300 1b
300 1b

150 1b
J 30°

(a)
Fg;

300 Ib

3ft 3 ft 3ft 11593 1b

3.464 ft

11593 Ib

19

Member CO.

The force in CO can be obtained by using

section bb. Taking the free-body diagram of

the left portion of the section:

(+SM,=0; —300(3.464) + Feo(6) = 0
FC() = 173 lb (T)

10/11/2020 Theory of Structures-DWE-3xxx

300 1b

3.464 ft
150 Ib

30°

NIVE 3 ANBA
COLLEGE OF ENGINEERING

Fop

Fco

C Fep

1159.3 b

6 ft

(c)

20
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Example:
Determine the force in members GF and G
GD of the truss shown in figure State N = o oL
whether the members are in tension or H e P COLLEGE OF ENGINEERIG
compression. ) % | ir -
3m
A —(M-—"-\ ¢ TR TS € Y[ :
- 11; c . ln -
t—— 3m ' 3m 3m * 3 m*—f
Soltition: A, =9kN 6 kN SkN 2kN  E,=7kN
(a)
> - . o Fg
(+=ZMp = 0; —Fgrsin26.6°(6) + 7(3) =0 r,\ /
GD
Fgr = 7.83kN (C) "
“ . = 56.3° A : S
(+3ZMy=0; —7(3) + 2(6) + Fgpsin 56.3°(6) = 0 YA %66 5.,
- Fep i E \ Sl Y
Fep = 1.80kN (C) ’ ”l._;.,._ 2 M
2 kN 7kN
10/11/2020 Theory of Structures-DWE-3xxx (b) 21

Example:

Determine the force in
members BC and MC of
the K-truss shown in the
figure. State whether the
members are in tension
or compression.

NIER ANBY
COLLEGE OF ENGINEERING

Solution: A, = 2900 1b 12001b 1500 1b 1800 Ib G, = 1600 Ib
(a)
> = i) o ; = L
(+3SM, = 0; 2900(15) + Fpe(20) = 0 b,
Fpe = 21751b (T) e
20 “ / i ML
: F\IH

The force in MC can be obtained indirectly by
first obtaining the force in MB from vertical force > Fje
equilibrium of joint B, i.e., Fg=1200 b (T) Then: T—~1w n«l

+12F, =0; 2900 — 1200 + 1200 — Fp =0 e i
Fpp =29001b (T) b

11| Page Unit-3: Analysis of Statically Determinate Trusses Dr. Zaid Al-Azzawi



3 3
B SF, =0; (—)F ;- (—)F =0 |
3 \/ﬁ MC /—12 MK

Hint:

It is also possible to solve for the force in MC by )
using the result for In this case, pass a vertical

section through LK,MK,MC, and BC. Isolate the

left section and apply ¥ Mg = 0. 00 1b
3 B
MG
1200 Ib
(d)

10/11/2020 Theory of Structures-DWE-3xxx

v

ANBAS
COLLEGE OF ENGINEERING

I:\Ill

2 2 i

+12F, = 0; 2900 — 1200 — (W)FMC o (W)FMK =0 Fo Bl Fsc !
Fyk = 15321b (C) Fyce = 15321b (T) Ans. 1200 1b
(c)

23

Compound Trusses:

If this type of truss is best analysed by applying both the method
of joints and the method of sections. It is often convenient to first
recognize the type of construction and then perform the analysis
using the following procedure.

k 4m
Mixed Analysis Method: Hee ; .

Compound trusses can be
analysed using mixed method
where section method can be
used to find member forces
that will help in solving the
other ones using joint
method or vice versa.

10/11/2020 Theory of Structures-DWE-3xxx

12| Page Unit-3: Analysis of Statically Determinate Trusses Dr.
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Solution: A il R
&) & / .: o COLLEGE o; ENGINEERING
(+tZMc=0; —5(4) +4(2) + Fyg(4sin60°) =0 4sin 60" m
' NF)c
F- . — 3. \ -
HG 46 kN (C) 7 N Tl )
A mpli-‘ €
l— 2 2
m—v—
SkN 4 kN
(b)
Joint A: Determine the force in AB and Al 346 kN
Joint H: Determine the force in HI and HJ.
Joint I: Determine the force in IJ and /B. 14 N F
Joint B: Determine the force in BC and BJ. K
Joint J: Determine the force in JC. 4 > _
A 13 C 'F( -
\ 4
SkN 4 kN 2 kN
10/11/2020 Theory of Structures-DWE-3xxx (C) 25
Example:

Compound roof trusses are used in a garden
centre, as shown in the photo. They have
the dimensions and loading shown in Fig. a.
Indicate how to analyse this truss.

i )

6 kN[ mﬂ'l m: 1 m»‘l m*l mml m-r‘l m.rl mul mml m—’l m Im

(a)

10/11/2020 Theory of Structures-DWE-3xxx 26
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Solution:

(+SMp =0; —1(1) — 1(2) — 1(3) — 1(4) — 1(5) — 0.5(6) + 6(6) — Frr(6tan30°) = 0 ) lﬂ&-
COLLEGE OF ENGINEERING
F/.",: = 5.20 kN (T) Ans.
By inspection notice that BT, EQ, and HJ are zero-force members
since + 1 2F, = Oatjoints B, E, and H, respectively. Also, by applying
+N\ZF, = 0 (perpendicular to AQ) at joints P, Q. §, and T, we can
directly determine the force in members PU, QU, SC, and TC,
respectively. By 1EN
. . 0 1 kN
It is a good practice to e
l ° .t lf' Flll'< II\NII\I\
try solving oursetr : N
y g y \ 4 0.5 kN
Fr 30°
le—eb—efe—efe—te—ote—d 6 kKN
Im ImIm Im Im Im
(b)
10/11/2020 Theory of Structures-DWE-3xxx 27
Example:

Indicate how to analyse the compound
truss shown in the figure.

COLLE\Gé OF ENGi‘NgéRING
Solution:

The truss may be classified as a type-2
compound truss since the simple trusses
ABCD and FEHG dre connected by three
nonparallel or nonconcurrent bars, namely,
CE, BH, and DG.

12 ft
\ Q -
A, =0% W F
< e -
A 6 ft #
A, F, =3k
10/11/2020 Theory of Structures-DWE-3xxx 28
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(+SMp=0; —3(6) — Fpg(6sin45°) + Fcp cos 45°(12)
+ Fepsin45°(6) = 0

10/11/2020 Theory of Structures-DWE-3xxx

Fer

ANBAS
COLLEGE OF ENGINEERING

+1SF,=0; 3 —3— Fpysind5° + Fcpsind5° =0 o o P"’F'M, ,
5 SF, =0, —Fpycosd5° + Fpg — Fepcos45° = 0 ' \ /s"/"fsv o "*"'“:' :
t h :II;
Fpy = Fcg =268k (C)  Fpg =378k (T) " -‘(f,)
Practice, Practice, and Practice ! -
Hint: - o
Joint A: Determine the force in AB and AD. Dy -".';2.»(3.73 k
Joint D: Determine the force in DC and DB. s
Joint C: Determine the force in CB. ‘f ‘1?1 '
3k 3k

Complex Trusses:

If this The member forces in a complex truss can be
determined using the method of joints; however, the solution
will require writing the two equilibrium equations for each of
the j joints of the truss and then solving the complete set of
2j equations simultaneously. This approach may be impractical
for hand calculations, especially in the case of large trusses.
Therefore, a more direct method for analysing a complex
truss, referred to as the method of substitute members, will
be presented here.

10/11/2020 Theory of Structures-DWE-3xxx

ANBAS
COLLEGE OF ENGINEERING
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Procedure of Analysis:

1- Reduction to Stable Simple Truss CXVERTY 07 0y
e 2 COLLEGE OF ENGINEERING
2- External Loading on Simple Truss
3- Remove External Loading from Simple Truss
4- Superposition

S/ forces s; forces

(b) (c)

Complex Trusses
3 9 26
F.w / +}i =lij i

* Determunate
* Stable

10/11/2020
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Example:

Determine the force in each member of the
complex truss shown in the figure. Assume
joints B, F, and D are on the same
horizontal line.

State whether the members are in tension
or compression.

Solution:

L 8 ft |

(a)

10/11/2020 heory of Structures-DWE-3xxx

(NI \[R‘.\I[\ OF ANBAR
COLLEGE OF ENGINEERING

1- Reduction to Stable Simple Truss e—m——_,
B /35 F 45 R
2- External Loading on Simple Truss o——n—_
5ke—t \E
4375k 4375k
&
1I k
3- Remove External Loading from Simple Truss —— HT/‘
B D
A o\ E

10/11/2020 heory of Structures-DWE-3xxx

(c)

l\l\[k;l[\ OF ANBAR
COLLEGE OF ENGINEERING

17 |Page Unit-3: Analysis of Statically Determinate Trusses Dr.
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4- Superposition

SDB = S’DB + XSpp — 0

—2.50 + x(1.167) =0 x = 2.143
— /
Si = S,‘ + XS; 5k
TABLE 1 1
Member S S; XS; S;
CB 3.54 -0.707 -1.52 2.02(T)
chb -3.54 -0.707 -1.52 5.05(C)
FA 0 0.833 1.79 1.79 (T)
FE 0 0.833 1.79 1.79 (T)
EB 0 -0.712 -1.53 1.53 (C)
ED -438 ~0.250 ~0.536 491 (C)
DA 5.34 -0.712 -1.53 381 (T)
DB -2.50 1.167 2.50 0
BA 2.50 -0.250 —0.536 1.96 (T)
CB 2.14(T)

10/11/2020

Theory of Structures-DWE-3xxx

35
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U [ ] t cou.sss OF ENGINEERING
nir-4
———

Approximate
Analysis of Structures O

11/12/2020 Theory of Structures-DWE-3321 .

Awesome
Structures

11/12/2020 e ORSuCtures- DWE'SSZT
Fa
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Approximate Analysis
of Tall Buildings under
Lateral Loadings:

1. Portal Frame Method
2. Cantilever Beam Method

.

v
sy

Causes of Lateral Loading:

1. Wind
2. Earthquakes

11/12/2020

y
(i
W

vy

st
Ll

;
\
VY

|

A
\j

i\l
A

. Y. ',‘
444
RO

2%

/777

/0

»

BEAMS

=)

COLUMNS co TN
KA 6EL A
e L2
/M=O
6El A
L2

11/12/2020
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2|Page

Unit-4: Approximate Analysis of Structures

Dr. Zaid Al-Azzawi



Anti-Symmetry

UNIVERSITY OF ANBA
COLLEGE OF ENGINEERING

Criterion-1: when frame is subjected to lateral loads, we can put intermediate
hinge in the mid of each member

F F

UNIVERSITY OF ANBA
COLLEGE OF ENGINEERING

3|Page Unit-4: Approximate Analysis of Structures Dr. Zaid Al-Azzawi




One Storey Frames:

UNIVERSITY OF ANBAR
COLLEGE OF ENGINEERING

F/2 F/2
F/2 F/2

UNIVERSITY OF ANBAR
COLLEGE OF ENGINEERING

4|Page Unit-4: Approximate Analysis of Structures Dr. Zaid Al-Azzawi



= 2 (3}
Criterion-2: when frame is subjected to lateral loads, the interior column of
carries the double of the exterior columns ) MM

UNIVERSITY OF ANBA!
COLLEGE OF ENGINEERING

FL% FL%

Example-1: gﬂ‘
oLl "ihu

UNIVERSITY OF ANBAR
COLLEGE OF ENGINEERING

5|Page Unit-4: Approximate Analysis of Structures Dr. Zaid Al-Azzawi



=F 5t (il

UNIVERSITY OF ANBA
COLLEGE OF ENGINEERING

T2t
24 t
Zii 2:[ —
F, 2F, F, 1&
2F,=0
4F, =24 O¢— =
Fi = F2 2F2 F2
SF,.=0
4F,=236
F,=9

Member Analysis: 24 t. f&]

6 ‘] 2 6 COLLEGE OF ENGINEERING

6|Page Unit-4: Approximate Analysis of Structures Dr. Zaid Al-Azzawi



Joint Analysis: :-24_t ] fﬁ}
|_6_Iza ,l i I 1‘5 wﬁ#ﬂ
» COLLEGE OF ENGINEERING
12tl:9 1&’1<78 91"9
-
’ 4 U B R |
5 Fy F,=18t
i % Mg =0
a ?‘— SFy, =0 (24-F,)x2- 4F; =0
F4 F3+F4:O 4F3=12
F,=—3 F;=3
=-—-
OR |-
I «1 2 ‘E COLLEGE OF ENGINEERING
y N -~ = 08
a 0‘6_ Mroaction - M%ctionr\ . Ts
1F4 15:4 TFs E §
4F,=6x2 =5
F3 = 13

7|Page Unit-4: Approximate Analysis of Structures Dr. Zaid Al-Azzawi



sl 6. 612 12 6 cou SIS U
3
12t
<+ 6 <= <

3 9 g, 18 9, 9
o o S
le 4 e + N|
™ b “
13
18 a 6 xF,=
TS i X
2 F113 2 M@ — O
12 12x2 = (3+F,)x4
—
IO 2Fy =
241 [ 4
3 f T b O Lm!
1 8 43_ 6 ‘% 12 ‘-1 %' —‘il couf;:cé%; Euxg‘mmc
t3 12t - -
12 9_1 9 R 18 9, 9
t A A
0
3
5
—»ﬁ
6
G
Iz EF, =0
8|Page Unit-4: Approximate Analysis of Structures Dr. Zaid Al-Azzawi




24 d 818 13 46_ _6> . coul e oF EvGERRNG
3 IE 5
6 A2
3 To E
24 t
—
£ 12 &

24 t &
5 e = W
— o O 4'12 45 DLUH s
F 6: l COLI}E\(;ESF[ Em}l‘NE‘ERING
6 12 6 |
<= < <+ 121 ra g
oot s cap g™
0 3 [ -
. h.
13
6 T W
—
2
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UNIVERSITY OF ANBA
COLLEGE OF ENGINEERING

UNIVERSITY OF ANBA
COLLEGE OF ENGINEERING
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UNIVERSITY OF ANBA
COLLEGE OF ENGINEERING

o4 3 3 &
3 ° ol 12 st © OLilRlcs

UNIVERSITY OF ANBAR
COLLEGE OF ENGINEERING
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heory of Structures-DWE-3321

UNIVERSITY OF ANBAR
COLLEGE OF ENGINEERING

heory of Structures-DWE-3321

UNIVERS F ANBAI
COLLEGE OF ENGINEERING
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Example-2: fﬁ}
DLl "gllu

UNIVERSITY OF ANBAR
2 4 t COLLEGE OF ENGINEERING

Solve it yourself based on what you have learned in
the lecture!

It is the same question for the tutorial session

13| Page Unit-4: Approximate Analysis of Structures Dr. Zaid Al-Azzawi



SIVERSTY OF AVEY
COLLEGE OF ENGINEERING

Unit-5

Influence Lines

11/13/2020 Theory of Structures-DWE-3321

SIVERSITY OF VY
COLLEGE OF ENGINEERING

11/13/2020
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Example: C&E
..\‘ =25 p) 1@&

2.5 ft
_ll — _,ll COLLEGE OF ENGINEERING
< o] = = o4l
I b f
A ) B A, ) B,
¢ 10 ft | . | 10 ft i
C+3ZMz=0:-A,(10) +1(7.5)=0 L+ 3EMp=0.-A,(10)+1(5)=0
A, =0.75 A, =05
b
influence line for A,
(e)
11/13/2020 Theory of Structures-DWE-3321
S 2 1 £:3
Influence line equation: - y— Lﬂ
Ol \nh
[o o | COLLEGE OF ENGINEERING
Q A
7 A B
O ‘ 10 ft ——®
LA
7 5
& N (f)
LN
S il
Q X
&P
/ P
NG
7 X
XY . o
4 influence line for A,
X
> (e)

11/13/2020 Theory of Structures-DWE-3321 4
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Example: Construct the influence line for the vertical reaction at B of the beam

in the figure.

—x —

ANBAS
] COLLEGE OF ENGINEERING

—— | O
1

(+tE=M,4 = 0; B,(5) —1(x) =0 A[i
B, = {v

influence line for B,

Example: Construct the influence line for
the shear at point C of the beam
in the figure.

o "NEERING
" 1
1257 ft 25" ft N
} 1 ‘ y A ‘ (6
- 7] .. I > B
- ~ S -
¢ 10 i I ¢ 10 ft I tzﬂ\
10ft—8M8
0.75 0.25 0.75 0.25
1
Ve Ve
( Ti | ( ) Ve
Mo t TSF,=0;Vc= —u.:.it Mot TSF,=0;Ve= u7SI 0.75 .
0.25 0.25 Ve=1-15*
0 0 53 X
2.57|-0.25 05 10
254 075 -0,
5 0.5 Ve==15%
15 0.25
11/13/2020 10 0 Theory of Structures-DWE-3321 6
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Influence line equation:
| COLIEE\GE OF ENGINEERING
| 25ft<x=10M1
A, B,
Ve
1
| —e=X
10
X
10
\
V(“ —
11/13/2020 Theory of Structures-DWE-3321 7
Example: Construct the influence line for the shear at point C of the beam
in the figure. | |
oy COLI}E\GE;)FENGI‘NEERING
x | Ve ‘ ' '
1 A C
0 0 R ——
41 —-0.5 e
+ B
41 05 J— i
8 0 4m- 4m 4 m-
12 | —05
1
—X— y—— 4m<xy=12m
M, M, I}
1>()s_\<41|1 1) ( T
Ve 4m— Ve
i, =1~- %.\ B,
11/13/2020 Theory of Structures-DWE-3321 8
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%m

1 COLLEGE OF ENGINEERING
VC='—(§X 0=x<4m
Ve=1l-3x 4m<x=<12m
Ve
0.5 7 W
/ Ve=1 3 X
4 12 _
X
x\l
-0.5 —0.5
V( - - _:{.\‘
11/13/2020 Theory of Structures-DWE-3321 9

Example: Construct the influence line for the
beam in the figure.

moment at point C of the

(NI ANBAL
COLLEGE OF ENGINEERING

e

; .
F2.5 rxi B
LT‘ € t 10 ft
015 0.25
Mq= ix
Mc ) M.=5— Ly
Mc 5 ft 2.5 g 2
Mg=125
\' . B
0.25 5 10

5|Page
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Influence line equation: \%1
. _ 1 § &.‘

Al ANBAS
COLLEGE OF ENGINEERING

(+ZMc=0; Mc+1(5-x)— (1 - 15%)° : :
: =5

5 1‘14 b
. B,

3321 11

Theory of Structures-DWE-3

11/13/2020

Example: Construct the influence line for the moment at point C of the

beam in the figure.
]
A C

1 1
X dm<x=12m
M, C Me : '
l, )()SA\<4m 1 ) ( T
¥e —4m—{ Ve
PHE P B,
11/13/2020 Theory of Structures-DWE-3321 12
Dr. Zaid Al-Azzawi
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Influence line equation: :@‘1

M COLLEGE OF ENGINEERING
1
Mc = 3x 0<x<4m B R

Mc=4-1x 4m<x=12m 2
8
2

M(‘ ]. -
2
8 12
X
4 N
-2

Example: Determine the maximum positive shear that can be developed at point é‘&
C in the beam shown in the figure due to a concentrated moving load \ﬂah‘
of 4000 Ib and a uniform moving load of 2000 Ib/ft. £

Al ANBAL
COLLEGE OF ENGINEERING

Concentrated foree: -1 C 5

Ve = 0.75(4000 Ib) = 3000 Ib e ]
Uniform load: | 05

Ve = [5(10 ft — 2.5 £t)(0.75) 2000 Ib/ft = 5625 Ib \ |
Total maximum load: --u;: .

4000 Ib

Ve )max = 30001b + 5625 1b = 8625 1b [ 20001/
o RRRRARN

l
A

C
2.5 ft -

® 10 ft- J

11/13/2020 heory of Structures-DWE-3321
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transferring loads for storage at points underneath it. It is anticipated that the
load on the dolly is 3 kRN and the beam CB has a mass of 24 kg/m. Assume A is a

pin and B is a roller. Determine the maximum vertical support reactions at A and
B and the maximum moment in the beam at D.

Example: The frame structure shown in the figure is used to support a hoist for Eﬁ}
e

ANBA
COLLEGE OF ENGINEERING

1 m*-‘Rl.S m#l.ﬁ m~-|

3kN

11/13/2020 Theory of Structures-DWE-3321 15

b1 m—4—15m——1.5 m— lm—-l——l.Sm—L—l.Smﬁ

\ \

kN

(Ay)mas = 3000(1.33) + 24(9.81)[5(4)(1.33)]
4,63 kN —im

influence line for A,

(By)max = 3000(1) + 24(9.81)[3(3)(1)] + 24(9.81)[3(1)(—0.333)]

%

I m—
= 3.31 kN Ans. | X
~0333 3m
influence line for B,
My,
(Mp)max = 3000(0.75) +24(9.81)[3(1)(—0.5) ] + 24(9.81)[3(3)(0.75) ] L mg/w\

= 246 kN-m Ans. —O.SI/‘—I.S L sm

11/13/2020 Theory of Structures-DWE-3321 influence line for ~w[3
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Qualitative Influence Lines

* The Muller-Breslau principle states:

moment) is to the same scale as the deflected
shape of the beam when the beam is acted on by
the function.

To draw the deflected shape properly, the ability
of the beam to resist the applied function must
be removed.

The influence line for a function (reaction, shear,

Qualitative Influence Lines

= For example, consider the following simply
supported beam.

A& ég

= Let's try to find the shape of the influence line
for the vertical reaction at A.

Qualitative Influence Lines

= Remove the ability to resist movement in the
vertical direction at A by using a guided roller

Qualitative Influence Lines

= Consider the following simply supported beam.

A B C élB

= Let's try to find the shape of the influence line
for the shear at the mid-point (point C).

9|Page Unit-5: Influence Lines Dr. Zaid Al-Azzawi




Qualitative Influence Lines

= Remove the ability to resist shear at point C
|
A = . o
ve T
The change in
shear is eq_uu\ tol

Qualitative Influence Lines

= Consider the following simply supported beam.

Aé C EhlB

= Let's try to find the shape of the influence line
for the moment at the mid-point (point C).

Qualitative Influence Lines

= Remove the ability to resist moment at C by
using a hinge

Nl

AT - = s g

Mc

Qualitative Influence Lines

= Sketch the shape of the influence line for the
reaction at point B

A = B p

Qualitative Influence Lines

= Sketch the shape of the influence line for the
reaction at point B

—

A [B
B, i

Qualitative Influence Lines

= Sketch the shape of the influence line for the
reaction at point A

1
| B

10| Page Unit-5: Influence Lines Dr. Zaid Al-Azzawi




Qualitative Influence Lines

= Sketch the shape of the influence line for the
reaction at point A

Qualitative Influence Lines

= Sketch the shape of the influence line for the
reaction at point B

Aé &3

Qualitative Influence Lines

= Sketch the shape of the influence line for the
reaction at point B

A = |
E
B,

Qualitative Influence Lines

= Sketch the shape of the influence line for the
shear at point C

A B & & D

Qualitative Influence Lines

= Sketch the shape of the influence line for the
shear at point C Vl

. e
= o= L &
The change in

H shear is equal to 1

| I X

4

Qualitative Influence Lines

= Sketch the shape of the influence line for the
moment at point C

ol

= R E&a &5 D

11| Page Unit-5: Influence Lines Dr. Zaid Al-Azzawi




Qualitative Influence Lines

= Sketch the shape of the influence line for the
moment at point C

~C -

A e pEsa — i - @D

Mc

Qualitative Influence Lines

= Sketch the shape of the influence line for the
moment at point B

B

A s cé D

Qualitative Influence Lines

= Sketch the shape of the influence line for the
moment at point B

-8

Aé v i I\__ CE | D

Mg

Qualitative Influence Lines

= Sketch the shape of the influence line for the
shear at point B

A o C i D

Qualitative Influence Lines

= Sketch the shape of the influence line for the
shear at point B
v

. L! . .
amm B o D
VB ] . :
‘ The_churbga in
shear 15 equal to 1
|

| |

Qualitative Influence Lines

= Draw the influence lines for the vertical
reaction at D and the shear at E.

E C
& —
A )’ 107t ‘|" 10 r’f%_BIE Lid _"‘_ 157 ;%

12| Page Unit-5: Influence Lines Dr. Zaid Al-Azzawi




Qualitative Influence Lines

= Draw the influence lines for the vertical
reaction at D and the shear at E.

E C

[ Xt

)
Aé B
}'10{#-’}' W e 157 ’|«— 15— Dy

D,

¥ i1

|

| 35+ ' 15 f¢

Qualitative Influence Lines

= Draw the influence lines for the vertical
reaction at D and the shear at E.

o

E
A }’ o7 ‘{‘ 10 ﬁ% BIE it "|"_ 15 f# ;% D

Qualitative Influence Lines

= Draw the influence lines for the vertical
reaction at D and the shear at E.

‘In ¢
s | 3N ]
;l-f e
|‘ 10 7+ |" o M 157 _'| 157t -
The change in
shear is equal to 1

=

Qualitative Influence Lines

= Draw the influence lines for the vertical
reaction at D and the shear at E.
* The change in shear at point E is equal to 1

* The influence lines can be determined by
similar triangles the values of

05 x _ 0515/ _
o7 57 — X" w8 000

Ve

13| Page
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N ANBAI
COLLEGE OF ENGINEERING

Influence
Lines for
Floor Girders

11/13/2020 43

Theory of Structures-DWE-3321

Example: Draw the influence line for the shear in panel €D of the floor girder

th the figure. <f
Ll

X V(.D '_‘_‘i B C D E

18 8-333 A%‘F
e =

20 [—0.333 | B | | |

30| 0.333 —10 ft ——10 ft —+—10 ft——10 ft —|

401 0O

14| Page Unit-5: Influence Lines Dr. Zaid Al-Azzawi



30 ft

(il

COLLEGE OF ENG|NEERING

G,

SMg = 0; F, = 0.333 ( T l}

v( D

1 atx =20ft

(il

B &
1)’).1: 0 1(‘\, =il
8| 2Mq = 0; F, = 0.333
G [ ,
10 ft T 20 ft
G,
M( 1 =0; Vep= —0.333
1
= (.2
15| Page Unit-5: Influence Lines Dr. Zaid Al-Azzawi




g

0.333

NYERSITY OF AVBY
COLLEGE OF ENGINEERING

20 /\
| | X

1()\/25 30

—0.333

40

Influence
Lines for

Trusses

11/13/2020

l\\[R‘. 1Y OF ANBAI
top cord COLLEGE OF ENGINEERING

bottom cord

< panel

floor beam

16 |Page
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Example: Draw the influence line for the force in members GB and €G of the
bridge truss shown in the figure.

11/13/2020 Theory of Structures-DWE-3321 49

SF, =0; 025 — Fgpsin 45° = 0

Fop = 0.354
o 0.25

X F GB Fgp

0 O 0.3584 12 18 24

6| 0354 !
12 [-0707 N\ o
18 | —0.354 -
241 0 ~0.707

11/13/2020 Theory of Structures-DWE-3321 50
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Feg

1
e
deck loading

0.5

6 12 18

influence line for Feq
(d)

11/13/2020

A AN
COLLEGE OF ENGINEERING

0.5 0.5
X=9m——+o

truss loading

Theory of Structures-DWE-3321

0.5

51

(A" AEA A N Y
R Y OO~ US

Theory of Structures-DWE-3321

o (A ARA A MNATMNA
oy S

11/13/2020 52

\ AN
COLLEGE OF ENGINEERING

Maximum Influence at
Point Due to Series

of Concentrated Loads

18| Page
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i G

30 ft - 51t 51t

40

Casel: (V) = 1(0.75) + 4(0.625) + 4(0.5) = 5.25k
Case2: (V¢), = 1(—0.125) + 4(0.75) + 4(0.625) =[5.375k |
Case3: (Vc); = 1(0) + 4(—-0.125) + 4(0.75) = 2.5k
11/13/2020 Theory of Structures-DWE-3321 53
1k 4k 4Kk
A B - -
G Ll
10 ft—- 30 ft - Sft 5t
= | SEY PR B
o Sft°5ft Case 1
Ve 075 .5 605 0s
0 15 20 T
—0.25 )
11/13/2020 Theory of Structures-DWE-3321 54
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1k 4k 4k

S

Case 2

lk 4k 4Kk

ANBA
COLLEGE OF ENGINEERING

Case 3

11/13/2020 Theory of Structures-DWE-3321

30 J

55

computed.

AV = Ps(x, — xq)
Sloping Line

determined previously.

When many concentrated loads act on the span,
computations used above can be tedious. Instead, the critical position of the
loads can be determined in a more direct manner by finding the change in e L
shear, which occurs when the loads are moved from Case 1 to Case 2, then COLLEGE OF ENGINEERING
from Case 2 to Case 3, and so on. As long as each computed is positive, the
new position will yield a larger shear in the beam at C than the previous
position. Each movement is investigated until a negative change in shear is

the trial-and-error

AV = P(y: — »n)
Jump

AV, =1(=1) + [1 + 4 + 4](0.025)(5) = +0.125k
AV, 5 = 4(—1) + (1 + 4 + 4)(0.025)(5) = —2.875k

Since AV2-3 is negative, Case 2 is the position of the critical loading, as

11/13/2020 Theory of Structures-DWE-3321

56

20| Page Unit-5: Influence Lines
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S | AIRBUSA380

11/13/2020

ANBA
COLLEGE OF ENGINEERING

Moment :

Theory of Structures-DWE-3321 57

AM = Ps(x, — x;)
Sloping Line

10

AMJ_g = —(2 + 4)(

(MC)max

11/13/2020

AM,_, = —2(7‘5)(4) + (4 + 3)( &b

15 75
_ e ’% _ = - 5 o f
1()>(6) ‘(40— 10)(6) B ok

40 — 10

= 2(4.5) + 4(7.5) + 3(6.0) = 57.0k - ft

Theory of Structures-DWE-3321

)(4) = 1.0k-ft

21| Page
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Example: Determine the maximum positive shear created at
point B in the beam shown in figure due to the wheel I
loads of the moving truck. COLLEGE OF ENGINEERING
11/13/2020 Theory of Structures-DWE-3321 59
4k 9k 15k 10k
Vi
X
10 20 :
—-0.5 ~—6 ft —-\-m«{
0.5 ' [ e
AVg=4(—-1) + (4 +9 + 15) ﬁ3=+0'2k :
e B J
ln——‘ I-S n-L—(a ft —=—61t J»m‘[
4k 9k 15k 10k
0.5 0.5
AVg=9(—1) + (4 + 9 + 15) R)— (6) + 10 —1—0- (4) = +14Kk A W
Slor o=

b ' -
1r14| l‘.‘ n--—ﬁnalwan —L-& H
11/13/2020 Theory of Structures-DWE-3321 60
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AVy

15(-1) + 4((:;(‘?)(1) + 9(%‘?)(4) + (15 + 10)((:;3)(6)

= -55k

1

Since AVB is negative, Previous case is the position of
the critical loading

(VB)max = 4(—0.05) + 9(—0.2) + 15(0.5) + 10(0.2)
=75k Ans.

In practice one also has to consider motion of the truck
from left to right and then choose the maximum value
between these two situations.

Va 05

11/13/2020 Theory of Structures-DWE-3321

Absolute Maximum Shear and Moment

NIVERSITY OF AVGY
COLLEGE OF ENGINEERING

Vlbs

d DS

max

11/13/2020 Theory of Structures-DWE-3321 62
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d, d, | 2 vV
| 3 5
A.‘~ B\ )i
IM =0 M :/\\(7—\)—1,11,
E ’
... L - L
x :T”'R){T_u -A\')K—;—,\')— Fd,
Frl. Fgx' Fgx®  Fpx@
For maximum M, we require
dM;  —2Fpx  Fgpx' _ 0
dx L L
11/13/2020 Theory of Structures-DWE-3321 63

Example : Determine the absolute maximum moment in the simply
supported bridge deck shown in the figure.

'FR =45k ccu.ssecv:; ENGINEERING
]

s 1 q|2 Fe= 45k

5 I 115k
! L8 2k s
' l } 2 15k

ARE
| "

| Y b — - 2 I — | aaue
Al 6671t 6671t 51t B, - L‘-‘qﬁ' ey
"1.67 fit i
L 30 ft -
15 ft 15 ft
+|Fg = SF; FR=2+15+1=45k

P+Mg. = SM¢;  45% = 1.5(10) + 1(15)

6.67 ft

=
I

11/13/2020 Theory of Structures-DWE-3321 64
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Case-1: f"y}‘
Fp=45k Lﬂg ,
; DLl i
: Q COLIEE‘GEOFENG!‘NEERING
!
1 lisk 2k L. s k
1k
1
) 1 v 1
SRS — )
IRS— - C M
A, ()(3711 ‘ ()(1711‘ ‘1 Sft B, R af -‘ ’
1.67 ft A,=25k
15 ft 15 ft
(+ZMp=0; —A,30) +451667) =0 A, =250k
(+=Mg=0; —250(16.67) + 2(10) + Mg =0
Mg = 21.7k - ft
11/13/2020 Theory of Structures-DWE-3321 65
Case-2: 1Fr=45k ﬁﬂ}
Q : \\mnr
2Kk p 15k 1Kk 2k COLLEGE OF ENGINEERING
P ho
Mg =204k ft | T | )
l e 1167 ft { 1—11.(»7 fr— Vs
3 3.33 ft - B, A= 175k
x 15 ft >
By Comparison the maximum moment is :
Mg = 21.7k-ft
Which oceurs under the 1.5 k load when pocsitioned as in the case-1
11/13/2020 Theory of Structures-DWE-3321 66
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Unit-6

Deflection

of Statically
Determinate
Structures

w

Determinate
OR
Indeterminate
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Elastic Beam Theory : | v ﬂﬂ}
L] it
d2'v M A ak i p  COLLEGEOF ENGINEERING
= e it e
2 X 0
de  El N
1- Double integration method. X v
2- Moment-area theorem. X
de
3- Conjugate-beam method. X o \o
4- Energy methods: T as M ( 3 :j“ )-"
- Method of virtual work. J  “ o =
- Castigliano theorem. y/
before after
dcl’or:nulion dcfnrll‘n;ninn

11/14/2020 heory of Structures-DWE-3321

External Work and Strain Energy ﬁﬂ}
oLl glu
Ue - Ui

External Work - Force :

F
JO x
TH U,= [ Fdx P
0 Fzg.\‘
I A ‘
il

2|Page Unit-6: Deflection of Statically Determinate Structures Dr. Zaid Al-Azzawi



i A
St A JL
F
’ C
o
. ploceoo_. B b Ue’ — P Ar
1S
Yp A G E .
A l—ar—
YF
External Work — Moment : ﬁfﬁ‘
0
U, = / M de .
0
1 M
U, = 1Mo U = M6’

3|Page
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Strain Energy - Axial Force :

_NL
AE

A

T 2AE

m

(NI ANBAS
COLLEGE OF ENGINEERING

Strain Energy - Bending :

do = (M/EI) dx P
wear LT
dU; = ———
' 2EI s e
M2 dx
o 2EI

Ui=

NIVERSITY OF ANBAS
COLLEGE OF ENGINEERING

M M

&

4|Page Unit-6: Deflection of Statically Determinate Structures
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Principle of Work and Energy

Theory of Structures-DWE-3321

g~ [ Mdx_ [f(-Px)idx _1PL
‘" Jo 2EI o 2EI 6 EI
U.=U;
1 i PR
~PA =—
2 6 EI
PL
A=—
3E]
Principle of Virtual Work fﬁn
Pl iu
2 P A —_— 2 u 6 COLLEGE OF ENGINEERING
Work of Work of
External Loads Internal Loads
Apply virtual load P’ = |
Iy T virtual loadings (@)
1A = 3u-dL
1 1 real displacements
[ i virtual loadings
1-0 = Zuy-dL
1 1 real displacements :
o P,
Apply real loads P, P, P,

(b)

5|Page Unit-6: Deflection of Statically Determinate Structures
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Method of Virtual Work

1- Trusses couésso;eus?r‘ce‘émuc
A- External Loading: | 1-A = 2"/]:’;
B
1
B- Temperature Effect: 1-A = Zna AT L Apply virtual unit load to B

(a)

C- Fabrication Error: | 1-A = Sn AL

Apply real loads Py, P,

(b)

Theory of Structures-DWE-3321 11

Example: Determine the vertical
displacement of joint € of
the steel truss shown in
the figure. The cross-
sectional area of each
member is A = 0.5 in?
and E = 29x103 ksi.

10 ft  COLLEGE OF ENGINEERING

—0.333 k

N\
1k ‘-’2{

O 2 3
0.333 k 0.667 k 0.667 k t
A
0.333k 1k 0.667 k
virtual forces n real forces N
Theory of Structures-DWE-3321 12
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Member n (k) N (k) L (ft) nNL (k2 ft)

AB 0.333 4 10 13:33 COLLEGE OF ENGINEERING
BC 0.667 -+ 10 26.67

cD 0.667 4 10 26.67

DE —0.943 —5.66 14.14 75.42

FE -0.333 -4 10 13.33

EB -0.471 0 14.14 0

BF 0.333 4 10 13.33

AF —-0.471 —5.66 14.14 37.71

CE 1 4 10 40

2246.47
2 S
nNL 24647 k> ft (246.47 k=~ ft)(12 in./ft)
lk‘AC,,’:E — lk.ACU: ) 3 )

AE AE (0.5 in°)(29(10°) k/in*)

Ac = 0.204in.

v

Theory of Structures-DWE-3321 13

&
Example: The cross-sectional area of each C > 4 kN f\ﬂ}
member of the truss shown in the I _ < OLillfles
figure is A = 400 mm? and E = 200 3m

GRa. A
(a) Determine the vertical displacement of ‘ &0 B

joint C if a 4-kN force is applied to the truss - T
at C. ,»4 m 4m —-l

(b) If no loads dct on the truss, what would
be the vertical displacement of joint € if
member AB were 5 mm too short?

I

NIVE ANBAI
‘ S COLLEGE OF ENGINEERING

Solution: I kN
Part-A: C 1
,,_. \//
,;;r\' "’-g‘,»( 0.833 kN 0.833 kN
P Y NS
AGZ N9 B = 4
T 0.667 kN T B 2’
0.5kN 0.5 kN 0.5 kN virtual forces n 0.5 kN

Theory of Structures-DWE-3321 14
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L S 4kN fw}
t_\\"' 2w \m
,.” “y Ml s
Y. K mg»#“m
4 kN - B COLLEGE OF ENGINEERING
| 2 kN T
1.5 kN 1.5 kN 1.5 kN real forces N 1.5 kN
Member n (kN) N (kN) L (m) n NL (kN?+m)
AB 0.667 2 8 10.67
AC —0.833 25 5 —10.41
CB —0.833 -2.5 5 10.41
>10.67

nNL 10.67kN’-m  |kN-A,. = 10.67 kN - m
VRN~ B, = 2, - 7 400(107°) m2(200(10%) kN/m?)

AE AE
Ac, = 0.000133 m = 0.133 mm

s (i
Part-B: N
1-A = 2” AL COLLEGE OF ENGINEERING
LkN-Ac = (0.667 kN)(—0.005 m)
Ac, = —0.00333 m = —3.33 mm
Note:

The negative sign indicates joint C is displaced upward, opposite to the 1-kN
vertical load. Note that if the 4-kN load and fabrication error are both accounted
for, the resultant displacement is then Acv= 0.133 - 3.33 = -3.20 mm (upward).

ory of Structures-DWE-3321 16
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&
Example: Determine the vertical displacement of joint € Eﬂ}
of the steel truss shown in the figure due to radiant oLl 7&1&.
heating from the wall, member AD is subjected to an COLLEGE OF ENGINEERIG
increase in temperature of AT = +120° F. Take & = 0.6x1075/°F
and E = 29(103) ksi. The cross-sectional area of each
member is indicated in the figure.
Solution: 1k 80k
“ %sﬂ—-' :
:‘J "D ,i%»alk ().75k‘—j . ]2()k—j - () k
2in? 0.75k 120 k
2in’
ne o 2in? " S~ 80k & 80k
N \"./' \\*\
4 /_}» =y 0.75 K e = 60 K emmpie] ; 1
80k 80k
(a) virtual forces n real forces N
(b) ()
Theory of Structures-DWE-3321 17
Solution: f%él
Ll
COLLEGE OF ENG:NE‘ERING
nNL
1-Ac, = D, + Zna AT L
: AE
(0.75)(120)(6)(12)  (1)(80)(8)(12)
2[29(10%)] 2[29(10%)]
(—1.25)(—100)(10)(12) .
- + (1D[0.6(107%)](120)(8)(12)
1.5[29(10%)]
Ac, = 0.658 in. Ans
Theory of Structures-DWE-3321 18
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Method of Virtual Work

(b)

2- Beams and Frames: COLLEGE OF ENGINEERING
;) m
i X " B
r
Apply virtual unit load to point A
(a)
L w
mM
1 2 A — dx A
o EI 3 =
x—d TTTTT77
Apply real load w
Theory of Structures-DWE-3321 19

=l

(a)

Apply virtual unit couple moment to point A

N ANBA
COLLEGE OF ENGINEERING

A
g | e -
0
do,
[11]»
Theory of Structures-DWE-3321 Appl\ I'C'dl l()ﬂd w 20
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12 kN/m

Example: Determine the Z
displacement of point B of the
steel beam shown in the figure.
Take E = 200 GPa, I = 500x10° mm*.

Solution: 1 kN
10 2
mM (—1x)(=6x%) dx ri=—iz) { | E—
1 kN-Ap = / dx = / :
B 0 El 0 El virtual unit forcc‘ P‘A
15(10%) kN? - m® F BED
El 4.
5 A .
15(10%) kN - m* g 10m :
AB = ) =13 - 4 4 ' i
200(10%) kN/m?(500(10°) mm*)(10™"? m*/mm*) -
5

= 0.150 m = 150 mm [ S !

j
Theory of Structures-DWE-3321 real load X

Example: Determine the slop © at 3kN
point B of the steel beam shown 1 B i S,
in the figure. Take E = 200 GPa, I = A “( e
600x106 mm4. [ — — T_ R—— — COLLEGE OF ENGINEERING
Sm | Sm A
Solution:
1 kKN-m I:’
B c lo
% —
A vg 1 ) mg, =0
ma e ) —
1 KN'm
/B
= = 1} Y=
L \I v,
[ Sm t X |
virtual unit couple
Theory of Structures-DWE-3321 22
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! COLLEGE (;F ENGINEERING
Il ) Ml =—3.\'|
"
real load
3kN
l My==3(5+xp)
L B
’”(‘M l
Op = X - =
. . = V,
. b (())(_3\|) (l.\'l 4 = ( ] )[_3(5 + .\'2)] (l.\': I~ am | X2 1 -
- A EI /. El
g, - —1125 kN - m?
B= " g1
—112.5 kN?- m®
(IkN-m)-6p = 6 2 6 10712 mé 4
200(10%) kN/m=[60(10°) mm™*](10""“ m"/mm™)
g = —0.00938 rad Ans.
Theory of Structures-DWE-3321 23
Example: Determine the horizontal Bf\k’xﬁ _____ &
displacement at point € of the frame e JC 1”
shown in the figure. Take E = 29(103) :: -y e L
ksi, I = 600 in*for both members. e X ‘ COLLEGE OF ENGINEERING
——
i
—
—
4 k/ft
[ 10 ft
s [
W —
—
X —
1 =Ra

Theory of Structures-DWE-3321 24
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Solution: m, = 1.25%; v 1”
7 Ll
“: H— I I\ COLLEGéOFENGl‘NEéRING
T f 10 k-ft
1.25k
T —- |k 10 k-ft
i 8 ft -t 8 ft
.25k
10 ft
1k 4l—1
1.25k
virtual loadings
Theory of Structures-DWE-3321 25
M, = 25x,
N, Hj Ll
‘_ X 1 COLLEGE OF ENGNEERING
A\ R
2 25 k 200 k- ft
N 8 n -‘ \
— 200 k - ft
E T 8 ft
|
. o] 25k
M] — 40.\’] - 2\'[' | :
N, : !
40 k ==>
VN [ 10 ft
- ¥/ Ly
X1l 4 | o
_7L| ‘ I : S it
4x =ro>i | 1, Loy
b [
40 k‘_l ’ 40 kd—l .
25k 25k
real loadings
heory of Structures-DW 321 26
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5 B /"‘de - /"“(lxl)(40x. — 2x3) dx, . /-“(1.25x2)(25x3) dx,
= f, EIT ) EI A EI
8333.3  5333.C 13 666.7 k « ft3
S El El El (1)
13 666.7 k - ft*
ACI: =

[29(10%) k/in?((12)? in?/£t?)][600 in*(ft*/(12)* in*)]

= 0.113 ft = 1.36 in. Ans.

Theory of Structures-DWE-3321

ANBA
COLLEGE OF ENGINEERING

Example: Determine the tangential rotation
at point € of the frame shown in the figure.
Take E = 200 GPa, I = 15x10° mm*

S 1 kKN-m SKN
TN v
i N X 5 kN

v"' 1 kKN-m £ ) ‘

X
= IY 300
mg, = —1 V¢
|My = =2.5x
(=t 1

Solution:

Vi

\»

1 kKN-m

virtual loads s

Theory of Structures-DWE-332
! teal loads

Al ANBA
COLLEGE OF ENGINEERING
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or

L omgM 3 (=1)(=2.5x;) dx; 2(1)(7.5) dx»
- A T /, El * /, El
1125 15 2625kN-m’
~ BI = EI El
26.25 kN - m?
0c =

200(10°) KN/m?[15(10°) mm*](10~"2 m*/mm?*)

= 0.00875 rad Ans.

£ ANBAS
COLLEGE OF ENGINEERING

1- Trusses :

i= EN(%)E

L

NIVERSITY OF ANBAS
COLLEGE OF ENGINEERING
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Example: Determine the vertical
displacement at Joint € of the truss

C
shown in the figure. The cross-sectional l > 4 kN

area of each member is A = 400 mm?2 and
E = 200 GPa.

Solution: Jj
;Q

N/‘(‘ = ()833P - 2.5 kN

4kN
N,p = 0.667P + 2 kN

|
P
e
0.5P — 1.5kN —L» 4 kN

= 3m /,ij" N
NB(" — ()833P + 23 kN /.//'/,./ N R
5 A 7 . N
Q 4 kN - 2 X
e 1 1 kS
1 4m -t 4m |
Nap = 0.667P + 2 kN
0.5P - 1.5kN 0.5P + 1.5kN
0.5P + 1.5kN
Theory of Structures-DWE-3321 31
')N ',N >, Lﬂi&l
Member N {, N (P = 0) L N(r, )L COLLEGE OF ENGINEERING
JP JaP
AB 0.667P + 2 0.667 2 8 10.67
AC —(0.833P — 25) —0.833 2.5 5 -10.42
BC —(0.833P + 2.5) —0.833 -25 5 10.42

2 = 10.67kN+*m

(')N) L 10.67kN-m
AE AE

AC:- = 2 N(F

Substituting A = 400 mm? = 400(107%) m?, E = 200 GPa =
200(10°) Pa, and converting the units of N from kN to N, we have

- 10.67(10°) N-m
400(107°) m2(200(10°) N/m?)

Ac, = 0.000133 m = 0.133 mm

Ans.

Theory of Structures-DWE-3321
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Example: Determine the  horizontal
displacement at Joint D of the truss
shown in the figure. The cross-sectional

3 &
v

area of each member is indicated in the 9 ft o o COLLEGE OF ENGINEERING
figure and E = 29(103) ksi. A )
) , A 1 in® 1 in®
Solution: Y 4 ! ¥ v B_& \l B
2 x % %, I 12 ft ] 12 ft |
S ] 10 k
)
[ — Lo} E— N\ L
| —13.33 I —13.33 1 AD;. = EN(F)Z—E— =04+0+0
10+ 0.75P 20 + 0.75P 10
i N 312.50 k - ft(12 in./ft
Member N ";’ N (P =0) I N<‘__P)L + X ( : / Z
J 0 (0.5in*)[29(107) k/in?]
AB —13.33 0 —13.33 12 0 o . ; .
e 1333 0 1333 > 0 135.00 k - ft(12 in./ft)
CD 16.67 0 16.67 5 0 (0.75 in®)[29(10%) k/in:]
DA 16.67 + 1.25P 1.25 16.67 3 312.50
BD —-(20 + 0.75P)  —0.75 -20 9 135.00 — 0333in
Theory of Structures-DWE-3321

Castigliano's Theorem

2- Beams and Frames:

,  \ P

oM \ dx
0 oM’ ) EI

wwwwww

NIVE ANBAI
COLLEGE OF ENGINEERING
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Example: Determine the displacement of point B Z 12XN/m
of the steel beam shown in the figure. Take E = l””l””l‘l””‘
200 GPa, I = 500x10% mm*.
Solution:
(+SM = 0; -M - (12.\')(%) —Px=0
" oM
= —6x" — Px = —X
M X Px op X
Setting P = 0, its actual value, yields
5 M
M = —6x° = —x
; apP ;
Ag= "M(w>ax (=6 (—x)dx _ 15(10°) kN-m’
v [ aP JEI A El - El
or
15(10°) kN - m?
Ap = ¢ Xz ¢ 4 -12 4 4
200(10°) kN/m=[500(10°) mm?*](10~"* m*/mm®) |
= 0.150 m = 150 mm Ans. ! !
Theory of Structures-DWE-3321 35
Example: Determine the slop © at 3kN
point B of the steel beam shown 1 i
in the figure. Take E = 200 GPa, I = A 2 . L
600x10% mm*. s —— e —— COLLEGE OF ENGINEERING
FS m ! Sm A
Solution: 3KN
?«"R e :::', For x;:
A | &C g8
. & ‘M = () -
- |, ., (+ZM = 0; M, +3x,=0
-4 M] = —3.\'|
(b) aM,
— =0
oM
For x,:
(+ZM =0; My—-M +35+x)=0
3kN 3kN My=M -3(5+ x,)
‘ M, l_» -3 M, M _
L ll ) | | ) M’
i—-"l—-l‘l L— Sm —4——-":4":
Theory of Structures-DWE-3321 36
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L 5
oM \ dx COLLEGE OF ENGINEERING
O = A M(aM’)E
_ /5<-3x|)<0) 9 /’5—3<5 +x)(1)dx,  1125kN-m?
0 El 0 El EI
or
5 —112.5 kN - m’
#7200(10%) kN/m2[60(10°) mm*] (102 m*/mm?*)
= —(0.00938 rad Ans.
Theory of Structures-DWE-3321 37
Example: Determine the slop at &
point C of the steel frame ) Lﬂu.
ShOWH ih the figure. Take COLLE\GE;FENG?NE'\ERING
- 3 2 = St
E = 29(10°) ksi, 1 =600 1. 2k/ft

Theory of Structures-DWE-3321

38
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For x,:

i X COLLEGE OF ENGINEERING
&+LM=(). _Ml_le T -M =0
M, = —(x}+ M)
("Ml - I
aM’
For x,:
(+ZM = 0; -M, — 24(x,cos60° + 6) — M' =0
M, = —24(x,cos 60° + 6) — M’
("M: = =
aM'
Theory of Structures-DWE-3321 39
COLLE\GE OF ENG&‘NE‘ERING

_/LM<('M)£

, \aM' ) EI

12(—x3)(—1) dx, /“’—2J,(x2 cos 60° + 6)(—1) dx,
[ El ; EI

X5 cos 60° + 6 ft

576 k-ft*  2040k-ft* _ 2616 k- ft?

- EI El El
2616 k - ft*(144 in?/ft?)
Oc = = = —— = 0.0216 rad Ans.
29(107) k/in“(600 in™)
40

Theory of Structures-DWE-3321
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A ANBAS
COLLEGE OF ENGINEERING

L

1

Unit-7

Analysis of
Indeterminate Structures
Using Force Methods

Theory of Structures-DWE-3321

Indeterminate —
Structures
R

Theory of Structures-DWE-3321
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Analysis of Indeterminate Structures ﬁ’fﬁ‘
oLl ﬁlu

1- Force (Flexibility) Methods: Classical Methods

- Consistent Deformation Method. v/

- Castigliano's Second theorem. X

2- Displacement (Stiffness) methods:

- Slope Deflection Method. v/

- Moment Distribution Method.

- Direct Stiffness Method. (maygbe)

NIVERSITY OF ANBA!
COLLEGE OF ENGINEERING

Force Method VS. Displacement Methods =&«

Equations Used

Coefficients of

Hnknoums for Solution the Unkhowns
Compatibility N
Force Method Forces and Force Flexibility

Displacements

Coefficients

Method

Displacement | Displacem

ents

Equilibrium and
Force
Displacement

Stiffness
Coefficients

2| Page Unit-7: Analysis of Indeterminate Structures Using Force Methods
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BEAMS

0: _AB+ A’BB

App = BnyB

General Analysis Procedure:

0= —Ap + Byfps

P

actual beam

Consistent Deformation Method: "s - ——ns fﬁ}
DLl 'ﬁh

» \ AN
(a) COLLEGE OF ENGINEERING

(c)

A 1

A .
primary structure
(b)

O:0A+MAaAA

NIVE ANBA
COLLEGE OF ENGINEERING

actual beam

(a)

0'4n = Maas,
redundant M, applied
(c)

AN

(d)

heory of Structures-DWE-3321
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2" Degree Indeterminate P, &

s B c S
Structure: B {5 L = ! -Lﬂm
actual beam COLLEGE OF ENGINEERING
(a)
P, P, l;\ (l |
B C B C B C
E‘ ‘—PJ o D+ A pEee e p T oA e D
»—<Sl‘f ________ Ac A'pp = Byfgs  A'ca= Byfca A'pc = Cyfge A'cc = Cyfec
primary structure redundant B, applied redundant C, applied
(b) (¢) (d)
|
By ¢

A D
O = AB + BnyB + CVfBC foB fcs

0= Ac + Byfcp + Cyfcc | — gy >

Theory of Structures-D

Procedure for Analysis:

COLLEGE OF ENGIEERIG
Principle of Superposition: Determine the number of degrees n to which the
structure is indeterminate. Then specify the n unknown redundant forces or
moments that must be removed from the structure in order to make it
statically determinate and stable. Using the principle of superposition, draw
the statically indeterminate structure and show it to be equal to a series of
corresponding statically determinate structures.

Compatibility Equations: Write a compatibility equation for the displacement or
rotation at each point where there is a redundant force or moment. These
equations should be expressed in terms of the unknown redundants and their
corresponding flexibility coefficients obtained from unit loads or unit couple
moments that dare collinear with the redundant forces or moments.

Equilibrium Equations: Draw a free-body diagram of the structure. Since the
redundant forces and/or moments have been calculated, the remaining
unknown reactions can be determined from the equations of equilibrium.

heory of Structures-D
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Example : Determine the reaction at the roller support B of the beam shown ﬂﬂ}
in the figure, £/ is constant.
COLI.EGE OF ENG!NEERING
50 kN SOkKN
A C B y T
-— ! "y = - S B:[.\,, + E BI& sy = Byfon
L 3 A( )
——6 m———— 6 m—==5% C B
actual beam primary structure redundant B applied :
(a) (b)
Solution : ) 50 kN
344 kN .
5 0=—Ag + B, r !
& P(L/Z) x P( [‘/2) L B "fBB 112 kN'n\(t< 6m .- 6m -t
b 3EI 2EI \2 15.6 kN
(50 kN)(6 m)? i (50 kN)(6 m)? . 9000 kN - m"l (©)
= I =_——
3E] 2EI El M (KN -m)
- 3 ' | 93.8
o pL® 1(12m)" 576 m-‘T ‘
TBE T 3E] 3EI El 3.27 )
6 12
Substituting these results into Eq. (1) yields
9000 576 KL (d)
¢h o o=gre () Bosse An 9
&
Example : Determine the reaction at the roller support B of the beam shown \Lﬂ
in the figure, El is constant. oLl flice
CO{.LE\Gé OF ENGl‘Ng\ERING
50 kN 50 kN
A& ‘(. e — 4 2 4 'lﬁ'nn = B, fpp
- » Sk ], t
3 C
!% 6 m%L 6 m—===% 0¢ g
actual beam primary structure redundant B, applied ‘
(a) (b)
24 solution :
0=—-Ap+ B,fps
LMm 6 Mm 12 Mm 6 0.0X(—x) 12 (=50(x—6)X(—x)
d d — ¢ dx
f f f f() EI f6 EI
AB= 0.0 +E f6 (50x - 300x)dx
- [50x3 300x2]12_ 9000 kN.m* |
BT g1 | 3 5 g El
Theory of Structures-DWE-3321 10
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J-L WL, 4 > Lﬂam
COLI.EGé OF ENGl‘NEéRING
12 (x)x(x) 1222
fep = ——dx = —dx Sy
fo fo EI IA — e ;B_L fos
17 9% ] f
fBB 3 1 kN
f 1 1726_ 576KkN. m3 50 KN
BB~ EI 3 El 34.4 kN '
[ 1
112kN'm* b—6m——6m—f
15.6 KN
0= 9000 + <576> B, = 15.6 kN M (KN -m)
EI EI ¥ 258
3.27 ,
6 5>~ (m)
— 112
Theory of Structures-DWE-3321 p i
Example : Draw the shear and moment diagrams for the beam shown in the f{ﬂ}
figure. The support at B settles 1.5 in. Take E = 29(103%) ksi and I = 750 in*.
COLLEGE OF ENGINEERING
Solution :
20k B - B,
Al 1.5in ‘ 5 i
T — | ~ C — 5 —~ X
e - A A'gp= B, s
12 ft =12 ft—-——24 ¢
actual beam primary structure redundant B, applied
(a) (b)
(+1) 1.5in. = Ap + B,fpp
Theory of Structures-DWE-3321 12
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Pb.\' ) )

B 6LEI(L

31.680 k - ft?
El

for = PL®  1(48)°  2304k-ft’
/BB T ASEIl ~ 48EI EI

5 P 20(12)(24) e . "
- — xf) = W[(%) — (12) — (24)7]

1.5 in. (29(10°%) k/in?)(750 in*)

= 31,680 k - ft*(12in./ft)* + B,(2304 k - ft’) (12 in./ft)?
B, = —5.56 k

Note : The negative sign indicates that By acts upward on
the beam.

Theory of Structures-DWE-3321

ANBA
COLLEGE OF ENGINEERING

13

Example : Draw the shear and moment
diagrams for the beam shown in the
figure. E/ is constant. Neglect the
effects of axial load. @
Solution :

0=0A + MAaAA + MBaAB

0:03+ MAaBA + MBaBB

0'an= My,

+

0'an= Mpa,p

Theory of Structures-DWE

(b)

actual beam

redundant moment M applied

redundant moment My applied

b LAl

NIVE ANBAI
COLLEGE OF ENGINEERING

10 ft

0'8a = Mag,

0'ss = Mpagy

14
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Using direct equations:
Check Hibbeler

Substitute data in Egs. (1) and (2):

(il

- 311'[;1 B 3(2)(2())} B ﬁ con.mseorensmeemue
AT 128EI  128E1  EI - . g
- wl?  7(2)(20)° 2917 | 0 === + < > + M ( )
B=3Q4EI  34EI  El El
ML 1(20) 667 0 = 291.7 (33) (6 67)
“AAT3EI T 3EI - EI EI
_ ML 1(20)  6.67
BB 3E] 3E] El MA = _458k‘ft MB = _208k’ft
_ ML 1(20) 333
“ABT6EI ~ 6EI  EI
Note that dgs4 = Ay a consequence of Maxwell’s
theorem of reciprocal displacements.
Theory of Structures-DWE-3321 15
V (k)
l(»,zﬁ\
- 20 x (1)
7 _ 8.125 375
2k/ft M (k-ft) o
LI IILT] s
( II‘ JI ) 20.2
458kt |4 20.8 k-ft X /_\ R
10 ft 10 ft 3.63 - 14.4 20y (ft)
8.125 \J
-20.8
45.8 (€)
Theory of Structur 321 16
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Consistent Deformation Method : FRAMES

Example : The frame, or bent, shown in COLLEGE OF ENGNEERING
the photo is used to support the bridge

deck. Assuming El is constant, Determine
the support reactions.

40 kN/m

Theory of Structures-DWE-3321 17

Solution :

40k
i COLLEGE OF ENGINEERING

Acfan

Primary structure Redundant force A, applied

Compatibility Equation :

(i’) 0=A,4+ Aifaa

Theory of Structures-DWE-3321 18
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my = 200(5 + x3) — 40,\'3(%)

= 1000 + 200x; — 20x7

200 kN

200 kN

Theory of Structures-DWE-3321

m s Lde _ 2/5 O)dx)dx 2/5 (200x;)(—3)dx,
e o EI 0 El 0 EI
5 /5(1000 + 200x3 — 20x3)(—5)dx;3
0 EI
= 40KN/m L, B E();)o 66 236.7 - 912(}6.7
o b Ll
)] oo me==5] = =5
e ) 5
my =0 = 5 m —f-x3—| 5m

19

"L mm /‘ (1x,)%dx, /5 R /S |
= | —dx=2| ———+2 [ (5)%dx,+2[ (5)%dx
T /, EI o~ EI o, s 2 ()

SIVERSITY OF ANGY
COLLEGE OF ENGINEERING

58333
- EI
0= —_()IE()166'7 Ax(—582.133) 40 kN/m
A, = 157kN

Using Equilibrium Equation =  157.1 kN

200 kN

Theory of Structures-DWE-3321

157.1 kN

200 kN

20
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Example : The Determine the moment at the fixed support
A for the frame shown in the figure. El is constant. m

COLI.EGE OF EN@NEERING
r Roller
B

X

Solution

100 Ib/ft
4 ft
redundant M 8 ft
ictual frame primary structure ipplied
Compatibility Equation : (['+) 0 =604 + M a44
— 3ft—
Theory of Structures-DWE-3321 21

PN cou.sse OF ENGINEERING

s00b

3 h)
%\ 2967 1

// |M, = 296.7x, — 50x,’]

5 /L Mo, dx 222.51b ﬁﬂl
Jo EI

>370.8 1b

/“(29. 17x;)(1 — 0.0833x) dx;
0 El S

5(296.7x; — 50x3)(0.0667x,) dx;
i /, EI

I
)
1
_ 5185 3032 _ 8218 «=29171b
El ET El f
300 1b

heory of Structures-DWE-3321 22
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Mgy S
apq = EA #‘1-\' ) MAM

: , ) | 0.03 1b
B /"‘(l — 0.0833x,) dx, N /"’(().()667.\‘3)‘(1.\'3 e
0 El 0 EI %\—- 0.0833 1b
\- 2% Y0.0667 Ib
_ 385 0185 _ 404
EI = EI  EI 4
|my = 1-0.0833x,|
821.8 4.04 !
0=——+ Myl — M, = —2041b-ft <
EIl "( El ) A T
0.0833 Ibe—pry L
‘%/ 1 Ib-ft

0

Theory of Structures-DWE-3321

Consistent Deformation Method : TRUSSES fﬁ}
Ll nlu

3 : 400 1b WE AN
Example : The Determine the force in D e > COLLEGE OF ENGINEERING

member AC of the truss shown in the

figure. AE is the same for all the members.

& 61t

Solution: (0 = AA(' + FA('fAC‘ AC Li; ’
e - s’ ;'

A -

actual truss redundant F,¢ applied

24

12 | Page Unit-7: Analysis of Indeterminate Structures Using Force Methods Dr. Zaid Al-Azzawi



nNL

Solution :

8ft

actual truss

AA(. = 2 /\E‘ Eﬁl
" . _ _ DI lu
B 2[(—().5)(4()0)(5)] , (Z06)(0)(6)  (=0.6)(300)(6) cmmmlmmwﬂmﬁmm
\E s AE
o= AE i _ +400 ~4001b
L (D(=500)(10)  (1)(0)(10) D& . SC
+ DY
AE AE 0 4
300 > 0 0
~ 11200 ’ o
AE i ”21. Ll [
Jacac = 2% 400 1b 7 .8
A I +400
S E.00) Y ) 3001 3001b
AE AE AE
-0.8
34.56 :
- D “Nille
- b i
o 11200 3456 ~06 LIo® 0.6
= - - +l
AE AE "X o
AT B
Fyc = 3241b (T) -08
Theory of Structures-DWE-3321 25
Example : Determine the force in each member of the truss shown in the

figure if the turnbuckle on member AC is used to shorten the member by
0.5 in. Each bar has a cross-sectional area of 0.2 in?, and E = 2911062 psi.

primary structure

,,,,,,

redundant F,- applied

26
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34.56 m

fac ac = AE From previous example co RO
, 34.56
05in. =0+ FFAC
_ 34.56 ft(12 in./ft)
05 m. = -+ — P _— FAC
(0.21n")[29(10) Ib/in?] | 559k (C)

Fac = 69931b = 6.99 k (T)

Theory of Structures-DWE-3321

Example : Using the data given, determine the member forces and support %
reactions for the pinjointed frame shown in the figure. The cross-sectional \Lﬂm
area of all members is equal to 140 mm?. Assume E = 205 RN/mm?. i
COLLEGE OF ENGINEERING
Solution :

30.0 kN

All member lengths L=3.0 m
AE = (140x205)= 28.7x10% kN
Sin60°=0.866, C0os60°=0.5

30 Sin60° = 25.98 kN |
30 Cos60° = 15.00 kN —

l 30m J 30m J 30m

heory of Structures-DWE-3321 28
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Compatibility :

UNIVE ANBAS
COLLEGE OF ENGINEERING

-+

" B
P - forces : 15.0 kN /\ zero zero
mwro - 30.0 kN wro zero zero
zero
A F
zero 2598 kN
U - forces: +0.58
-0.58
F
1.0

15| Page Unit-7: Analysis of Indeterminate Structures Using Force Methods
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” PL & & ( ul M] ot e Mem|Length| AE (kN) | P- |PL/AE| u |(PL/AE)|(ul/AE)xu
«©. T T F~ (mm) force | (mm) (mm)
AE AE ber (kN) (,:,','1)
Ve=- Z /Z = 0/0.18 = zero AB | 3000 [287x10)| 0 | o [ o | o 0
BC | 3000 [28.7x10°| 0 0 0 0 0

Final member forces :
CD | 3000 |28.7x10°| 0 0 [+0.58 0 0.035

DE | 3000 |28.7x10°[ 0 0 [+0.58] 0 0.035

150 kN
; ; ; \ DF | 3000 |28.7x10°[ 0 0 [-0.58[ 0 0.035

zero ~300KN  zero CF | 3000 |28.7x10°| 0 0 |[-058] o0 0.035

zero CG | 3000 |28.7x10°[ 0O 0 |+0.58] 0 0.035
A 150 kN G 3

LI oL BG | 3000 [28.7x10%|-30.00{ -3.14| 0 0 0

Y=zero | £=+0.18

Theory of Structures-

Consistent Deformation Method :
COMPOSITE STRUCTURES el e

!1s'-‘-.0‘;[;

VAl
SN

umm )

Theory of Structures-DWE-3321 32
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Example : The simply supported queen-post trussed beam shown in the photo is
to be designed to support a uniform load of 2 kN/m. The dimensions of the
structure are shown in the figure. Determine the force developed in member
CE. Neglect the thickness of the beam and assume the truss members are pin
connected to the beam. Also, neglect the effect of axial compression and shear
in the beam. The cross-sectional area of each strut is 400 mm?2, and for the
beam I = 20(10%) mm*. Take E = 200 GPa.

ANBAI
COLLEGE OF ENGINEERING

Solution : 2 kN/m

Yyvyy VL YyvYyY

Actual structure

Theory of Structures-DWE-3321 33

Feefeece

Redundant F applied 4

17 | Page Unit-7: Analysis of Indeterminate Structures Using Force Methods Dr. Zaid Al-Azzawi



LT

—0.5 kN

6 kN % |
i .
2%, ) my = —0.5x, + 0.5(x; — 2)
i Vs 5 T 1 i
: T" ’: = 0.5 kN
- M- . 1118 kN
B | ) (-
1\‘0 \E
6 kN 0
[ X i Theory of Structures-DWE-3321 35
£:3
2 D ¢
\ LMmd . EHNL " “(6x; — x7)(—0.5x,)dx, Ll
g — X = |
€k 0 El AE 0 El COLLEGE OF ENGINEERING

(1.118)(0)(\V/3)
AE

/3(6\'2 - x3)(—1)dx;
4 2 8

o )+ (

12 17.33
=———-—=+0+0+
El El O B+

_ o =2933(10%)
200(10%)(20)(10°%)

o

1(0)2)

)

(=0.5)(0)(1)
AE

AE

—-7.333(10 %) m

Theory of Structures-DWE-3321

36
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ol o)
. m-dx
JcECE A Fl EAE

N
nL

(8]

/-3 (—0.5x,)%dx, 3 (=1)%dx,
—_— 2| —
Jo El /3 El

<(l.118)3(\/§)> ((—0.5)3(1)) ((1)3(2))
o) il St § PR W B (Y -
AE AE AE

13333 2 559 05 2
=—+ — + + 4
El El AE AE AE
3.333(10%) 8.090(10%)
= +
200(10%)(20)(107°%)  400(107°)(200(10%))

= 0.9345(10"%) m/kN

0

—7.333(10"*)m + F¢£(0.9345(107%) m/kN)
= 7.85kN

~
~
|

Theory of Structures-DWE-3321

Al ANBAL
COLLEGE OF ENGINEERING
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Unit-s

Analysis of

11/28/2020

Indeterminate Structures
Using Displacement Methods

Theory of Structures-DWE-3321

L~
0

“lil

ANBAI
COLLEGE OF ENGINEERING

E

Slope-Deflection Method

11/28/2020

1|Page

oy o 4
VA2 G 7Y
GIIYIL TG

’////// //// //////

0SS 470 '*«

Theory of Structures-DWE-3321

Unit-8-A: Slope-Deflection Method

5%

//(44/( {/(}{/\/)g/{,d‘y,{ Lyx,

1r §17 ’» AL

Dr.

7
%
Y% ﬂ
ita

COLLEGE OF ENGNEERING
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Zaid Al-Azzawi



i

|€ L 2|
MA;;Q_)MM

h° 4“0/ B

o4 L L 1 1)
M“CH)M”

e /i ol

g
(a Mo El constant _I

a: A _m _____ h—:[\
=

Degrees of Freedom : When a structure is loaded, specified points on it, called &
nodes, will undergo unknown displacements. *Iﬂi
referred to as the degrees of freedom for the structure, and in the DLl s
displacement method of analysis it is important to specify these degrees of COLLEGE O ENGIEERING
freedom since they become the unknowns when the method is applied.

These displacements are

20 kN/m

11/28/2020 Theory of Structures-DWE-3321

BEAMs & FRAMEs :
P

(b)

11/28/2020 Theory of Structures-DWE-3321
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General Case :

TS
S
—

deflection
| curve I - |

EI 1s constant
positive sign convention

/28/2020

-
-

fil

RSITY OF ANBAI
COLLEGE OF ENGINEERING

Angular Displacement at A, 6, :
v/- Using Conjugate Beam Method

COLLEGé OF ENGI\NE‘ERING
. 1/ M, L 1/ Mp, 2L
(+SM 4 = 0; 5( /:;B)"}.? -~ [5( [:,’;‘)1.]? =0 M,p
) ('A _ B
: . [1(Mpa\, 1L [1{Mas), 2L ~_ 0, — ;# )
(+ZMp = 0; 5( £l )’}T‘ = [E( £l >1]T + 0L =0 S *\-’ ______________ “
L = —r—— @@ | BA
real beam
(a)
4EI
M 4p = 7 64 ' ’H ,
" T T T T T f F iy -
,.HHHHHH
201 Ly g,
M BA — L OA Vii=0,4 conjugate beam El
(b)
11/28/2020 Thec res-DW 1 6
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Angular Displacement at B, 6;:

4E1
Mpa = T 05 Msfll @00 0 Mg
( A _oe=m7 7 HB\A\“\\ B )
S
2E]
M5 = TOB | L !

Relative Linear Displacement, A:

v/- Using Conjugate Beam Method fﬁ}
Ll !m

1 M 2 1 M 1 VRIS OF 1Y
L+EMB' = (); |: (L)<—L>:| — [——(L)(;L)} —A=0 COLLEGE OF ENGINEERING

2E1\3
_ —6EI (Hs S

(a)

M
El

conjugate beam
(b)

4|Page Unit-8-A: Slope-Deflection Method Dr. Zaid Al-Azzawi



Fixed-End Moments: \/- Using Conjugate Beam Method

l P L 1 M P couise“)rsusi‘ns‘énme
+12F, =0; |:—<—)L:| = 2|:—(f)L] =
: 2\4E1 2\ EI = 1 v
= E ( T % —— % T )
8 | L | _L_ |
M | 2 | 2 | M
General Case real beam
P (a)
e W e PL
| =
(FEM) 45 (FEM)g4 & J:[‘ ; o
M : M
— = El El
Map = (FEM),p Mgy = (FEM)g, W——
(b)
11/28/2020 Theory of Structures-DWE-3321 9

Fixed End Moments f@}
S

l l Wk BV
COLLEGE OF ENGINEERING
(A B) (/\ 1 B
L L L ﬁ|__ L=
S 2 I . Z 2
(FEM)p = % (FEM)py = % (FEM) 45 =3l£
P P
—a —-l-—h—. -—uﬁ-—h—-l
(A B) (A 1 B
=
Pb? : Pa’h F 1
a 2 ) 2
(FEM)sp =~ (FEM)py = —>— (FEM)'4p = (T’;—)(h-u + ".,—h )
P P P P
(4 (I | B) ( LA B
§ A .
L L L_| L ‘_‘ L L
5+ I I S s s
. 2PL 2PL
(FEM)p = =5 (FEM)gy = =5~ (FEM)'sp = 4
P P P IJ) i’ Ii
|2 R ,
(‘4 L | L | L _| I B) (" L ) 1 L E. | i
_T+T'+_T'+—T" vy 3 T3 g

w
]
~

. _4SPL
(FEM) = 220 (FEM)yy = - (FEM) 1 =25

11/28/2020 Theory of Structures-DWE-3321 10
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L

(- RERERERINNY, ) s Oy,

L
’ wi. - ; wi2 s
(FEM) 5 =5 (FEM)p =% (FEM) 1 == COLLEGE OF ENGINEERING

_ﬂjTrrl“ I I I I I\l
('\ L L II) (-\ =
; F——45— ' £ L
12 - 2 -
'FF_M\,,,:% mExh,,,:% (FEM) 45 =?“FL
o W W
G e ) ( e ]
= o
- L ) L 4
(FEM)p = % (FEM)p, = % (FEM) 5= L

Lt A,
(=) (=

(FEM)yp = 5:‘_.)0'»: (FEM)py = 5%‘ (FEM)' 35 =5%L
(* L (* e A
B B L
L . s
(FEM)pp = #é (FEM)p, = (;—f{“\ (FEM) = 375{-‘
11/28/2020 Theory of Structures-DWE-3321 11

Slope-Deflection Equations :

If we add all the effects of 8,, O and A we get b ﬂlu

ANBA
the following slope-deflection equations : COLLEGE OF ENGIEERING

ki AY]
MAB - ZE(_) 20,4 + 03 - 3(_) -1 (FEM)AB

E L
I\[ A\]
Mpa=2E( T ) 205 + 04 = 3( ) | + (FEM)p,

Since these two equations are similar, the result can be expressed as a single
equation. Referring to one end of the span as the near end (N) and the other end
as the far end (F), and letting the member stiffness be represented as k= 1I/L and
the span’s cord rotation as Y (psi) = A/L we can write

11/28/2020 Theory of Structures-DWE-3321 12
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MN = 2Ek(20N - = 01: = 3¢I) - (FEM)N
For Internal Span or End Span with Far End Fixed

where

My = internal moment in the near end of the span: this moment
is positive clockwise when acting on the span.

E. k = modulus of elasticity of material and span stiffness
k=1/L.

Oy. 0 = near- and far-end slopes or angular displacements of the
span at the supports: the angles are measured in radians
and are positive clockwise.

Y = span rotation of its cord due to a linear displacement,
that is, ¢y = A/L: this angle is measured in radians and is
positive clockwise.

(FEM)y = fixed-end moment at the near-end support: the moment
is positive clockwise when acting on the span: refer to
the table on the inside back cover for various loading
conditions.

11/28/2020 Theory of Structures-DWE-3321

SIVERSITY OF AVEY
COLLEGE OF ENGINEERING

13

Pin-Supported End Span :

My = 2Ek(20N + 0 — 3¢) + (FEM)y
0=2Ek(20F + 6y — 3¢) + 0

!

My = 3Ek(6y — ¢) + (FEM)y
Only for End Span with Far End Pinned or Roller Supported

A D
‘-,—J—,?):--’ =3 | “f_/
0,0 P
A H( ()I)
11/28/2020 Theory of Structures-DWE-3321

14
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Procedure for Analysis : ﬁ:}
Ll

ANBAS
COLLEGE OF ENGINEERING

Degrees of
Freedom

Slope-Deflection

Equations

Equilibrium
Equations

11/28/2020 Theory of Structures-DWE-3321 15

Example : Draw the shear and moment diagrams for the beam shown in o
the figure. E/ is constant. | 6(6)’ lﬂ
Solution : (FEM) e = _i _ — _72KN'm Sl h:.\
Degrees of 30 . 30 COLLEGE OF ENGINEERING
>0 Freedom =1 wL? _ 6(6)°
(FEM)cp = —— = 108kN-m
20 20 6 N/
s m
E s
My = ZE( )(ZHN + 0 — 3¢) + (FEM)y ‘ c
8m { 6m
I El
M,p = ZE(E)[Z(O) + 6 — 3(0)] + 0 = 703
I El
MBA =2F g)[Z()B + () — 2 ())] + 0= 763 MAH(
2E1
MBC= E [208‘*'0—3(0]_72—703_72

[2(0) + 05 = 3(0)] + 10.8 = =05 + 108

¢
4 :

16

11/28/2020 Theory of Structures-DWE-3321
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Equilibrium
Equations m

VB L M BC COLI.EGE OF ENGINEERING
(+ZMp = 0; Mps + Mpc =0 QTl:d;
E : M 1 \Y%
S5+ (56,-72)=0 =6,=""= BA p VB
EI y
M, p = 1.54kN-m
Mgy = 3.09kN-m
M[;(' = —3.09kN-+m
Mcp = 12.86 kKN -m
11/28/2020 Theory of Structures-DWE-3321 17

Shear and Bending Moment Diagrams : f 1
6 kN/m m

l§4 I\N' m l l 1 ]“(‘*‘ kN COLLEGEOFENGINEERING
’ P A | ‘ 1)
1.54kN-m B, =0579kN ”
- I ) 0.579 kN f 12.86 KN-m
0S8 I
(1 V (kN) 4.95 kN
A, = 0.579kN T 3.09kN-m 437
—0.579 “',\I”“"‘ 14 x(m)
6 kN/m
B, =43TkN T ” , = 13.63kN M (kN -m) 547 _13.63
P - J ‘ { l liv‘ -~ ;
(‘I I) 207 x B x(m)
\y 10.96
3.09kN-m ‘ 6in 12.86 KN-m -3.09
|
-12.86
11/28/2020 heory of Structures-DWE-33 21 18
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Example : Draw the shear and moment diagrams for the beam shown in
the figure. El is constant. \ﬂ
SOIution : COLI.EGEOFENG!NEERING
FEM) 5 = = %5 = — L 2)24)2 = —96k-t
( ),m——?~*ﬁ(—)('—) ==20 K1t Iik
L2 1 o .
WS IO TE—— HHHHHHHHL "
12 12 A = B -
3PL . 3012)(8) 7
FEM)gc = — = — = —18 k- ft 4 fi
( )ac 16 16 ! 24 ft 8 ft
1
MN §= 2E(I_)(ZH/\I + H[: - 3(,/) + (FEM)N
y e
Map = 25( ! )[2 0) + 65 — 3(0)] — 96 My = 3£<z>(0~ — ) + (FEM)y
M 45 = 0.08333E105 — 96 Mpc 3E(é)(”li -0)-18
My = 25( ! )[29,, +0—3(0)] + 96 Mpc = 0.375E16p — 18
Mpa = 0.1667EI105 + 96
11/28/2020 Theory of Structures-DWE-3321 19
(+=Mjp = 0; Mgy + Mpc =0 MBC ﬁ(ﬂ‘
144.0 %
BT TTEl MBA Ve
M, = —108.0k - ft
Mgy = 720k - ft
Mpe = —T72.0k - ft
11/28/2020 Theory of Structures-DWE-3321 20
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1)

> 1
V”l =225k V"n =15k

(1

2k

|

‘ ‘ C, =30k

108 k-ft ———12ft———12ft — 72 k-ft 72k-ft - YTy COLLEGE OF ENGINEERING
V (k) (c)
25.5
\ li-—L
- x (ft)
12.7\24 28 32
-22.5
M (k- ft)
54.6
x (ft)
12.75
11/28/2020 21
—-108

Analysis of FRAMEs - No Sidesway

- ~~

NIVE ANBY
COLLEGE OF ENGINEERING

=1
A1

~ — 2Q - \
T ey <4
/ A / \
! I \
] 1 \
] I |
| I |
| | |
\ I |
\ | |
\ | I
\ | |
\ | I
| I
\ I
\ I
| \ !
] \
|
|
—t— N B e N AR
11/28/2020 Theory of Structures-DWE-3321 22
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Symmetric Frames :

T

It

11/28/2020 Theory of Structures-DWE-3321 23

Example : Draw the shear and moment diagrams for the frame shown in
the figure. £/ is constant.

SOlution : COLLEGEO;ENG:NEERING
SwlL? 5(24)(8)
(FEM)pe = ——g—= —~———= —~B0kN*m 24 kN/m
SwL?  5(24)(8)°
(FEM)cp = =g — = ——5—— = 80kN-m
Note that8, = 0p = Oand Y 45 = ¥pc = Ycp = 0, since no sidesway
will occur.

My = 2Ek(20y + 0p — 3¥) + (FEM)y

Myp = 25(%)[2(0) + 60— 3(0)] + 0

M 45 = 0.1667E16

I
Mps = 2E<E>[203 +0—-3(0)]+0

MBA = 0333E103

11/28/2020 Theory of Structures-DWE-3321 24
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; :
Mpc = 2E(§>[203 +6c — 3(0)] — 80 B-ig-l: T_‘é}*c ){ﬁgl

Mge = 05EI05 + 0.25EI6; — 80
MBA $M('I)

Mcg = 0.5EIfc + 0.25E185 + 80 Mgy + Mge =0
Mcp + Mcp =0

ANBAS
COLLEGE OF ENGINEERING

Mcp = 25(%)[2% + 6 — 3(0)] + 80

Mep = 25(%)[2(% +0—3(0)]+0

Mep = D35BT 0.833E105 + 0.25E16, = 80

I
Mpc = 25(5)[2“’) * B =30 +0 0.833E16. + 0.25EI65 = —80
Mpc = 0.1667E16¢ 1371

11/28/2020 Theory of Structures-DWE-3321

823kN-m

Mgy = 45.77kN-m )ﬁ@l
M BC - _45 .7 kN T /\ COLLEGE OF ENGINEERING
MCB=45.7kN°m / | \

45.7kN-m 457 kKN -m

MCD = —457kN-'m
MDC = —229kN-'m

45 7kN-m

229 kN-m 22.9KN-m

13| Page Unit-8-A: Slope-Deflection Method Dr. Zaid Al-Azzawi



Example : Determine the internal moments at each joint of the frame
shown in the figure. The moment of inertia for each member is given in
the figure. Take E = 29(103) ksi. |
Solution : COLLEGE OF ENGINEERING
400 X 200 :
(A = —— o = 0.001286 f°  kcp = 7 = 0.000643 ft*
15(12) 15(12)
800 ; 650 .
kgc = 7= 0002411 f*  kcg = - = 0.002612 ft’
16(12) 12(12) 6k
PL  6(16) , B l,, HHHHH
(FEM)gc = —— = — —— = —12 k- ft / = 2
8 8 800 in* C T A»
ln
Pl 6(16 ‘ 8 ft - 8 ft——!
(FEM)(‘BZTZ (g ) =12 k-ft U 121t -
‘ R 15 ft 4 A—
H'LZ 3( 12)- 400 in 200 in
(FEM)cg = — = ———— = —54k-ft ‘
8 b \
\
T "N | B
11/28/2020 Theory of Structures-DWE-3321 7
My = 2Ek(20y + 0F — 3¢) + (FEM)y
M 45 = 2[29(10%)(12)%](0.001286)[2(0) + 65 — 3(0)] + 0 ﬂ
M"‘” - l()74()70B COLLEGEOFENG!NEERING
Mpga = 2[29(10%)(12)%](0.001286)[265 + 0 — 3(0)] + 0
M[g,\ = 21 48]50”
M e = 2[29(10%)(12)%](0.002411)[265 + 6¢c — 3(0)] — 12
Mpc = 40277.805 + 20 138.96, — 12
Mg = 2[29(10%)(12)%](0.002411)[20¢ + 05 — 3(0)] + 12
Mcp = 201389605 + 40277.80c + 12
My = 3Ek(6y — ¢) + (FEM)y
Mcp = 3[29(10%)(12)%](0.000643)[6c — 0] + 0
M('I) = 8()5560(
Mg = 3[29(10%)(12)%](0.002612)[6¢c — 0] — 54
M(‘[.“ = 32 72579( - 54 28

14| Page Unit-8-A: Slope-Deflection Method Dr. Zaid Al-Azzawi



s M |
;E-H-» #C;-H-» cmese.;;'m;xueem
L Fw., M5 = 0296 k - ft

Mpga = 0.592 k- ft

Mpc = —0.592 k - ft

Mcp = 33.0 k- ft

Mcp = 412k ft

Mcp = —37.3K-ft

MBA 0 MBC = ()
MCB + MCD + MCE =0

61 759.365 + 20 138.90, = 12
20138965 + 81 059.00, = 42

0 = 2.758(107) rad
Oc = 5.113(10™*) rad

11/28/2020 Theory of Structures-DWE-3321

C
LB
DLl
k A ﬁ -
COLLEGE OF ENGINEERING
.
\

Analysis of FRAMEs - Sidesway

\
\

-

-

30

Theory of Structures-DWE-3321

11/28/2020
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Example : Determine the moments at each joint of the frame shown in
the figure. El is constant. ‘ﬂ

solution s COLLEGEOFENGlNEERING
M a5 = 2E( = )[2(0) + 85 - 3 + 0 = EI(0.166705 — 0.75 13"'\" }-\-{
a = 2E\ 15 (0) +65—3 l-,'«l’l)( = EI(0.166765 — 0.75¢:pc) 40k w—— Lc
I ALt
Mg, = ZE( l,)>|i20” + 0 — 3( l’w'x)] + 0 = EI(0.33305 — 0.75¢rpc)
% 12 fi /
M”(' = E( [79[; T 0( - x(“ ] + 0= EI( )"(170[; + 0. 1110() {
I A . 18ft
Mcp = 2E(ﬁ>[20( + 05 — 3(0)] + 0 = EI(0.2676 + 0.13385) .
i 1
Mcp = 2E<ﬁ)[29(~ +0 - 3Ypc] + 0 = EI(0.2226¢ — 0.333¢pc) 1o
I
Mpc = 2&(1\>[’(n) + 8¢ — 3pc] + 0 = EI(0.1116, — 0.333¢pc)
) ASf
11/28/2020 Theory of Structures-DWE-3321 31

Mg
MBA + MB(' =0 4()k_>‘B _ﬁ ﬁ 2 ﬂ

M(B + M(l) - 0 M(.R COLLEGEO?ENGNEERING
£ 3F, =0; 40-V,—-Vp=0 imm Mcp
: M ap + Mp,
SMp =0, Vg = My, e
Mpc + Mc # R
Thus, 12 ft
Mup+ M Mpc + M¢ 8 f
4() iE AB BA + DC cD =0 18 ft
12 18
V_,¢
0.605 + 0.1330¢c — 0.75¢pc = 0 M,
0]3303 -} ()4899( == ().333(//[)(‘ —_— 0 VI) X
480 M),
0.50p + 0.2220c — 1.944pc = — 7+ .
11/28/2020 Theory of Structures-DWE-3321 32
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El0p = 438.81 EI6c = 136.18 Elypc = 375.26

ANBAS
COLLEGE OF ENGINEERING

M,z = —208 k- ft
Mg, = —135k-ft
Mpe = 135k - ft
Meg = 94.8Kk-ft
Mcp = —94.8 k- ft
Mpe = —110k - ft

11/28/2020 Theory of Structures-DWE-3321

Example : Determine the moments at each joint of the frame shown in &
the figure. The supports at A and D are fixed and joint € is assumed pin k\ﬂj
connected. El is constant for each member. Hlillflica
Solution : COLLEGE OF ENGINEERING
l‘"' —3Im—
10 kN

11/28/2020 Theory of Structures-DWE-3321 34
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Slope-Deflection Equations
/
My = ZE(Z>(ZHN + 0 — 3¢) + (FEM)y
/
MAB = 2E<I>[2(()) + 0p — 3!/)‘] +0
(1 /
MB/\ = 2F Z (291} + 0 - 31/[) + 0 4
/
_anl L _ 4 Ocp
My = 3E I (O — ¢) + (FEM)y :
I
I
MB(' = 3E<§>(”I) = ()) + 0 II (l/(vl)
] 1
Mpc = 315<Z>(0 —¥)+0 '.'
D
11/28/2020 Th Structures-DWE-3321 35
Equilibrium Equations : Msc f@‘*}
i 10 kN \Lﬂ
Mgy + Mpc =0 N'”A"”)h
B 3F, =0 10-V,—-Vp=0 M,
Map + Mgy v
SMy = 0; V,y=-— ; ii v, -_T-»v(-
M pc
SMg = 0; Vp=-—
4
10 + Map + Mps _ Mpc ~0
. 4
VA V,)
M, Mpc
11/28/2020 Theory of Structures-DWE-3321 36

Unit-8-A: Slope-Deflection Method

18| Page
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Substituting :

(il

COLLEGE OF ENGINEERING

I

7.14 kN
17.1kN-m
(e)

) 3
B = 4411
i %@9” _ %ﬁ) _ o, = 240, _ 320
21E1 21E1
Muz=—-171kNm, Mg, = —11.4kN-m
MBC=11.4kN'm, MDC=—11.4kN'm
3.81kN 3.81 kN 3.81 kN fY
10 kN—> | || 2GRN —H B 2.86 kN
lfi:{ ‘m 2i81§4k& i + COLLEGE 'OF ENGNEERING
7.14 kN
114kN-m S
3.81 kN
2.86 kN
11.4
3.81 kN
11.4kN-m 11.4
7.14 kN

2.86 kN
114kN-m

3.81 kN

171 114

(f)

19| Page
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Solution :

Example : Explain how the moments in each joint of the two-story frame shown
in the figure are determined. El is constant.

Al \[K‘ 1Y OF ANBA
COLLEGE OF ENGINEERING

Al + A'\ Al + Aﬁ
40kN )\1 75#
( '\-e—_—,.,ﬁ_ — i ~ ]
/ /
| ‘(
m \ “
Al,‘ Al"
80kN B [ | =
— %_4_ . Zjlj
¥ . == — /
/ /
Jom
! ’_
A W
—m——
11/28/2020 Theory of Structures-DWE-3321 39
M ,p = 2E <4) [2(0) + 65 — 3yyy] + 0 M Mo 40&»‘
J C D
/
.‘["‘,‘ =2E (;)l"ﬂ” + 0 - 3lll|] + 0 s S MI)I
M( B
Mpgec = 2E (é)[’u,, + 0c —3y,] + 0
I M Mgp Vae - Vep
Mcp = 2E (;)[ Oc + g — 3] + 0 N
I B )va M/;n( E
Mcp = 2E (7)[’14 +0p—3(0)] +0 e W
] MIH
Mpe = 2E (5)| Op + 0c — 3(0)] + 0 40 kN
Mpp = 2E <§)[ Op + 0 — 3(0)] +0
/
Mgp = 2E (7)[’”/ + 60 — 3(0)] +0
80 kN
Mgp = 2E (é)[’n, +0p — 3] + 0 —]
I
Mpg = 2E (;)| Op + 0 — 3] + 0
Mg = 2E (4)[7(()) + 0 — 3] + 0
: Vas ¢ - Ve $
‘III = 2F <£)P”I + (0 - 1.[;|] + () Theory of Structure
20| Page Unit-8-A: Slope-Deflection Method Dr. Zaid Al-Azzawi




X 3F, =0; 40 = Vpc = Vep =0

MBA + MBE + MBC — O
i Mpc + Mcp i Mgp + Mpg

40 =0 oA
M CB + M cp = O 5 5 COLLEGE OF ENGINEERING
Mpc + Mpg =0 X 3F, =0; 40+ 80 — Vg — Ve =0
Mgp + Mg+ Mgp =0 120 + M, p + Mpy M M g + Mpg _ 0

d

Substituting the 12 slope-deflection equations in these 6 equilibrium
equations will lead to a system of 6-equatins 6-unknowns which can be
solve algebraically to find :

¢1'¢2 ’ eB ’ oc ’ BDI and BE

Then Moments can be found and drawn

11/28/2020 Theory of Structures-DWE-3321 41

Example : Determine the moments at each joint of the frame shown in the

&
figure. El is constant for each member. f{ﬂ}
oLl ;lu

Solution : COLLEGE OF ENGIEERIG
SHITHT

/

A; ,60°

20 ft .\13"3

(c)

11/28/2020 Theory of Structures-DWE-3321 42
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) 2 {gb
FEM), = < B2 20D s Lﬂ
( ) = 12 12 : A 5 HLallfli
; 3 6 O COLLEGE OF ENGINEERING

. -\I _ ﬁ _\z 1
h=1 W 12 3~ 20
I/
But: A, = 05A, and A; = 0.866A, Map = 2E (m)[ +0p = 3Yy] + 0 (1)
/
d;z = _0'417¢l l//:; = 0433¢,1 Mgy = 2E <m)[ O +0—3yy] +0 (2)
Mpc = 2E <]L,)>["(i,, + 0c — 3(—0.417y,)] — 24 3)
M( B = 2L<]L7>[ )( v H” - ‘; ()-“7(//1 ] + 24 (4)
Mcp = 2E <7L0)[ Oc + 0 — 3(0.433y,)] + (5)
Mpe = 2E (%)[2 0) + ¢ — 3(0.433y,)] + 0 (6)
11/28/2020 Theory of Structures-DWE-3321 B 43
Mh'A + MH(' = () (7) 2 /?_A
Mcp + Mcp =0 (8) Fll
/30° |
[+2Mo = 0; Jo
Msp+ M Mp-+ M, 241t / 120,78 f
Mg+ Mpc — (—"” = ”")(34) - (—”( 55 "’)(40.78) —24(6) = 0 / T
—24M 45 — 3.4Mp, — 2.04Mcp — 1.04Mpe — 144 =0 (9) oo |
24 VAmu ma— 1
0.73305 + 0.1676, — 0.392¢; = — A\ 1 !
EI L—M(-—L—(»ﬁ—-l\
24 10 ft ‘ ‘
0.16705 + 0.5336¢ + 0.0784yr, = — —
EI \
144 Mz .
—184()08 = ()512(‘)( + 388()([/1 = E‘ N¢ v, =w 20 ft
El6g = 87.67 Elf = —82.3 Ely, = 67.83
Map = —232Kk-ft Mpc = 563k-ft Mcp= —253k-ft L Mt Mep X
Mgy = =563k ft Mcg =253k ft Mpc = —17.0k - ft S 4/ i
11/28/2020 Theory of Structures-DWE-3321 N“
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Moment-Distribution Method ﬁn
OLilAldes

ANBA
COLLEGE OF ENGINEERING

The method of analysing beams and
frames using moment distribution
was developed by Hardy Cross, in
1930. At the time this method was

first published it attracted immediate

attention, and it has been recognized
as one of the most notable advances
in structural analysis during the
twentieth century.

Theory of Structures-DWE-3321

AMERICAN SOCIETY

N ANBA
COLLEGE OF ENGINEERING

CIVIL ENUINEERS

Pawe Yo ™

ANALYSIS OF CONTINUCUS FRAMES BY

DETREUTING FIXEDEND MOMENTS

e (oo M Ae S C 8
Wil IR

Basss CF ATTIRL L E GROCTYA & A GAAMAR A A enw»
PLOER G B R A B ORLAY. B 7 AL B A CAEREN
L L AVIRRRUAM TR A Mads

N E WEARMAN, REAAR D | RO
MO IR ARAAES PN Sahaal

R MARTEL AAYEE F s e
PR r N r

AN D B AN
XY L

Theory of Structures-DWE-3321
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Signh Convention :

Clockwise moments that act
on the member are
considered positive, whereas
counterclockwise moments
are negative

Fixed-End Moments (FEMs) : ﬂ(ﬂ‘
O gh

(NI ANBAL
COLLEGE OF ENGINEERING

800 N

P —

FEM = PL/8 = 800(10)/8 = 1000 N.m.
Noting the action of these moments on
the beam and applying our sign
convention, (t (s seen that

Mup = 1000 N.m Mgy, = +1000 N.m

rheory of Structures-DWE-3321

Member Stiffness Factor : Joint Stiffness Factor : ﬁﬂg}
LU e
M 4 K.p = 1000 d K 45 = 4000 COLLEGE OF ENGINEERING
/\_E\ —l‘”‘ s ; ) n D B
s - K¢ = 5000
M = (4EI/L) 6,
= SEI
—_ 3 .
Far End Fixed —
K, = 3K
K is referred to das the stiffness factor
at A and can be defined as the KT = > K = 4000 + 5000 + 1000
amount of moment M required to
rotate the end A of the beam 6,=1rad. = 10 000.
Theory of Structures-DWE-3321
3|Page Unit-8-B: Moment-Distribution Method Dr. Zaid Al-Azzawi




Distribution Factor (DF) :

/7 A
D
B

M =2000N-m COLLEGE OF ENGINEERING
M, = K#
M:M1+M,,:K19+K”9:92Ki =
M; K0 M =2000N-m
DF, = — = — ‘
200 N-m 800 N-m
1000 N-m
DE,5 = 4000/10 000 = 0.4 M,z = 0.4(2000) = 800 N -m /
DF, = 5000/10 000 = 0.5 M_c = 0.5(2000) = 1000 N+m
DF,p

= 1000/10 000 = 0.1 M,p = 0.1(2000) = 200 N +m

1eory of Structures-DWE-3321

Member Relative Stiffness Factor :

Most of the time E is identical for all

members, so it can be omitted from the
edquation :

1
Kp=—
R

Far End Fixed

Carry-Over Factor :
COLLE\(;é OF“ENGl‘NE‘ERING

M
(' B
= = M’
A . T

Myp = (4EI/L) 0,4
MBA = (2EI/L) 0/4

Solving for 8, and equating the equationsleads to
the fact that :

4|Page
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Example : Determine the internal moments at each support of the
beam shown in the figure. £/ is constant.
20 kN /m o
Solution 2 COLLEGE OF ENGINEERING
4E1 4E1 4E1
Kas =77 pc="9 Kep=-g=
Therefore.
4EI/12 i
DF 5 = DFpc =0 DFg4 = DFpe = m =05
DE... = 4E1/12 i DE.r, = 4E1/8 -
o8 = SEI/2 + 4E178 - Prer = igr v sk T 0
The fixed-end moments are
12 —20(12) L2 20(12)°
(FEM)pc = —% = (1(21 S 240kN-m (FEM)¢p = ’% - “(12) = 240kN-m
—250(8 250(8
(FEM)¢p = —P—_" - ’,( ) < —os0xN<in (FEM)pe = P—," — ,(h) = 250kN-m
8 8 8 8
Theory of Structures-DWE-3321 9
250 kN
20 kN /m
A B (& D iU
| COLLE\GE OF ENG&‘NE‘ERING
Joint A B (8 D 1
Member| AB BA BC CB G DC 2
DF 0 0.5 0.5 0.4 0.6 0 3
FEM —240 240 —250 250 4
Dist. 120 120 N 4 6 5
CcO 60 2 60 3 6
Dist. =1 =il —24 =36 7
CcO =05 =17 —-0.5 —18 8
Dist. 6 6 X 0.2 0.3 9
CcO 3 0.1 3 0.2 |10
Dist. —0.05| —0.05 =142 =15 11
CcO —-0.02 —0.6 —0.02 =09 |12
Dist. 0.3 0.3 0.01 0.01 13
M 62.5 12520 [1=12521 | R 281550 R=2815110 2343 1| 14
Theory of Structures-DWE-3321 10
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250 kN

20 kN/m
62.5 krg-lmA Blf-ﬁkN 1o7.ouf TTTTT |If3.0kN 130.9(k? 4m l 4mni.l)kN !
i NIVERSITY OF ANBAI
Gl
£y 2m ) 1252kN-m ( B 12m c )2815 kN-m c D L it COLLEGE OF ENGINEERING
M (kN -m) 242.1
160.9
62.5
\4.2 12 , 24 , 32
‘ 173 ' 28 x (m)
=125:2
—2343
—281.5
Theory of Structures-DWE-3321 11
Example : Determine the internal moments at each support of the beam shown &
in the figure. El is constant and The moment of inertia of each span is indicated k\ﬂ
Solution : ) L
414( 7 _() ) 4[ ‘(6( )() ) COLLEGE OF ENGINEERING
AWh 4L
BC = 0 = 150E Kep = 15 = 160E
- ) 400 Ib 60 Ib/ft
DFge=1—- (DF)gy=1-0=1 .
150E DER
DFcp = —————— = 0484 A v:
L0k -+ 160k Iy = 500 in* Igc= 750 in 600 in*[-
B 160E aw TR
DFep = 150 + 160E ~ 016 10 £t~ 20 ft ———=o— 15 ft ——
160E
DFpc=———7"7—==10
PE 00 + 160E
Due to the overhang,
(FEM) g4 = 400 1b(10 ft) = 4000 Ib - ft
wL?  60(20)° .
(FEM)I;(' == 12 = 12 = —=2000 Ib - ft
12 60(20)° i
(FEM)cp = —"], = p) = 2000 Ib- ft

6|Page
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Joint B (@ D
Member BC CB cD DC
DF 0 1 0484 | 0516 0 400 Ib 60 1b/ft COLLEGE OF ENGINEERIG
FEM 4000 |=2000 2000
Dist. —-2000 . —968 |—1032 1
co -484 “I* —1000 T =516 Lyg = 500 in* &
Dist. 484 | 484 516 50 S
CO 292 ‘TN 242 258 : I l
Dist. —242 | -117.1| —1249
(&¢) -586°F —121 —62.4 ||4001b 60 Ib/ft
Dist. 58.6 586 |  624. 4001b 770.6 Ib l l l 1 1 l l l 4294 1b 58.51b 293.6 Ib-ft
co 203°° 293 312 || ( 1 = - t ( T ——
Dist. =2034 “142] 151 1087 %4000 1b-fo 201t S87.11b-ft B 5w
co -7.1 —14.6 =76 o
Dist. 714 7.1 7.6 M (Ib-ft)
co 35 35 3.8 ‘ 049.1
Dist. =35 =1 ) —1.8 : 293.6
co —08" -18 -0.9 ¥ : 4 m
Dist. 0.8 0.9 0.9 228
coO 0.4 0.4 t 04 —587.1
Dist. -0.4 -0.2 —0.2
cO -01’* -02 -0.1 —4000
Dist. 0.1 0.1 0.1
M 4000 —4000 3587.1 —&5071 —203.6 Theory of Structures-DWE-3321 13

4 EI

Stiffness Factor Modifications :

Typical Scenario !

M
=

0
L 1 |
.@iﬁ )? M COLLEGE OF ENGINEERING
unlocked

il

joint locked
Member Pin Supported at Far End : joint
! 1/ M 2
B o = < y -— e —— == = M B
L+...MB 0: VA(L) 2(EI)L<3L) 0 1 E
y o ML _ 3EI
Vig =0 = o WehiM = =—¢
3E] 5 R would have to
el be modified by EMI \\\\\ %(g) (L)
L 34 to model the i \‘f: ~~~~~~~~~~
Far End Pinned :::ef of h:vir.lg W
e far en in 1 , 2
or Roller Supported connected. F o g i
Va conjugate beam Vi
Theory of Structures-DWE-3321 14
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Symmetric Beam and Loading :

conjugate beam

X L — 4y T
M L real beam
N v = () —_ 3 _ — | =
(+t2ZMe = 0; Ve(L) + El (L)<2> 0
ML
Ve ==k
or 2EI
2EI =7
M= TH = Symmetric Beam and Loading

* Thus, moments for only half the beam can be distributed provided the
stiffness factor for the centre span is computed using K 2El/L . By

comparison, the centre span’s stiffness factor will be one 1/2 that usually
determined using K = 4El/L .

Theory of Structures-DWE-3321

15

Symmetric Beam with Antisymmetric Loading :

2(e)(2)(6) 2 (&)

M

El

L

5L
2

6

M
EI

L

2

L

L+XM(" = (0 —VB(L) + (—
D

(&)

determined using K = 4El/L.

conjugate beam

Theory of Structures-DWE-3321

ML 6E1
Vg =0 =—+ M = 0
b 6EI L
=~ Thus, moments for only half
K = g the beam can be —
L distributed provided the 2
Symmetric Beam with stiffness fac?;or for the LMoL ?ﬁ’
AntisemmetsicLoadin centre span is computed 7 &P () | El
Y & using K = 6EUL . By Vi t__
comparison, the centre 1
span’s stiffness factor will i/ La . c|V
be one 1.5 that usually \7£ o Ve

16
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Kas

K BC

DFg4

DFpc

Example :
in the figure. £/ is constant.

DF 45 =

(FEM)g, =

(FEM)pc =

Solution :

Determine the internal moments at each support of the beam shown
4k /ft

I ANBAI
COLLEGE OF ENGINEERING

_ 3EI
15
_2EI
) - 15 ft -- 20 ft o 15 ft -
3EI/15
3EI/15 . Joint A B
o DRIN o Member | AB BA | BC
3EI/15 + 2EI/20
- 2E1/20 = G DF 1 0.667 | 0.333
T 3EI/15 + 2E1/20
A FEM 60 |-1333
Tk L Dist. 48.9 24 .4
L2 4(20)°
== (lz) = ~1333k-ft M 0 | 1089 |-1089

Theory of Structures-DWE-3321

17

Example : Determine the internal moments at each support of the beam shown
in the figure. The moments of inertia for the two spans are indicated.

Solution : STVERTY O (Y
4E1 4E(3()()) 8()E COLLEGE OF ENGINEERING
= — = DF = —=)
Kap=—7 15 AB ™ o + 80E ,
3EI 3E(600) 80E Zalbim
D iy AT DFgy = ———— = 04706 &
Kpe =7 20 BA ™ 80FE + 90E )
7. "
90E . Ipc = 600 in* =G
) T e— )‘D 94 a" . B( e
DFpc = 50E + 90E ~ % @l ) | , |
()()E '"'d 15 ft T 20 ft 1
DFCB = m =
wl?  —240(20)
Joint A B C (FEM)ge = — 3 .- 3 = —120001Ib-ft
Member AB BA BC CB
DF 0 04706 | 0.5294 1
FEM ~12.000
Dist. 5647.2 6352.8
co | 28236”
M 2823.6 5647.2 —5647.2 0 Theory of Structures-DWE-3321 18
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- 240 Ib/ft
564.71b 564.7 Ib 21181b
(1 -I)SM?lh-fl (1 l) swlbnctlllllllllllt
Wb DR t 20 ft
32471b
M (Ib-ft) 9343
2824}\
1.5 . x (ft)
\/ 26.2
5647

Theory of Structures-DWE-332

NIVEI X 1Y OF ANBA
COLLEGE OF ENGINEERING

19

Example

Solution :

Moment Distribution for Frames: NO SIDESWAY

: Determine the internal moments at the joints of the frame shown in
the figure. There (s a pin at E and D and a fixed support at A. El (s constant.

NIVE 3 ANBA
COLLEGE OF ENGINEERING

Ran = 4IP_I il 411_\/ K= # Rew= "1[':[' 5 k/ft
DF, =10 ) - l l l l l »3\
4EI/15 - l l l l l 7
DFp, = 3EI/15 + 3EI/18 0.545 20 k_,_' m— | 3
12 ft—
DFEge = 1-0.545 = 0.455
. 4EI/18
DF¢p = ;l[;'i/’ls = .‘QE'I,,/I.% = 3—51/12 = (.330 15 ft
y 3EI/15
DFeo = 4E1718 + 3EI/15 + 3EI/12 "2 \ D
DFce = 1-0.330-0.298 = 0.372 _1:
DFpc =1 DFgc=1 .
(FEM)pe = 2 = 12 = 135Kt
,J 2 5(18)2
il % B % =R Theory of Structures-DWE-3321 20
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Joint A B &) D E
Member| AB BA BC CB CcD CE DC EC
DF 0 |0.545 | 0.455|0.330 | 0.298 | 0.372| 1 1 cou T
FEM =135 135
Dist. 73.6 61.4|—44.6 | —40.2 | —50.2
CcO 36.8 =2231" 30.7
Dist. 12.2 1010 =101 9.1 |-11.5
CcO 6.1 =5.1 Sil
Dist. 2.8 23 =1.7 -1.5| —-19
CcO 1.4 ={(): 12 :
Dist. 0.4 04, —04 | —04| —04 Lk
CcO 0.2 —-0.2 0.2
Dist. 0.1 01| =01 00| —=0.1 \ /
! 51.2k-f
SM | 445 | 89.1 |—89.1] 115 | —512 | —64.1 o/ \ N\
115k-ft
445k -1
Theory of Structures-DWE-3321 21
Moment Distribution for Frames: SIDESWAY
P
'—A—‘I J C I—Aﬂ &5
= == ~ B R
o o | /
Al ilp A D
artificial joint applied artificial joint removed
(no sidesway) (sidesway)
Theory of Structures-DWE-3321 22
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P,
A
p:—br ‘
/ P4
A] /.‘
fr
pl—b, ¢ S—-
1

heory of Structures-DWE-332

&

— R,

UNIVERSITY OF ANBA
COLLEGE OF ENGINEERING

El (s constant.

No-Sway Solution :

Example : Determine the moment at the joints of the frame shown in the figure.

UNIVERSITY OF ANBA
COLLEGE OF ENGINEERING

Unit-8-B: Moment-Distribution Method

Dr.

16 kN 16 kN
1 ml 4 m ol &
B B ' {l<— R B = R
Sm Sm - +
A D Al D Al | D
(a) (b) (€)
12| Page
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6(4)%(1) ,
(FEM)gc = — e ~10.24 kN -m
16( l )(2.(4) COLLEGEOFENGINEERING
(FEM)cp = ———— = 2.56kN+-m
(5)
Joint A B & D
Member| AB BA BC CB CD DC ‘ ‘
DF 0 | 05| 05| 05| 05 0 Py —
FEM 1024 | 2.56 578kN-m  [§§2.72kN-m
Dist. 5.12 S.IZX—1.28 —-1.2
CO | 256 -0.64"]* 2.56 —0.64 i Sm
Dist. 0.32 0.320,—1.28| —1.2
CcO 0.16 —0.64 0.16 —0.64
Dist. 0.32 0.324,—0.08| —0.0 288 kN-m 1.32 kN-m
CO | 0.16 —0.04"]* 0.16 -0.04| X el
Dist. 0.02 0.02 | —0.08| —0.08 A, =173kN aD, = 0.81 kN
M 288 | 5.78 | =5.78 | 2.72 | —2.72| —1.32 1 t
(d) (e)
Theory of Structures-DWE-3321 25
‘ l 16 kN
L _
/-\ N C COLLE\GE OF ENGi‘NE‘ERING
578 kN-m 2.72kN-m B € R
=
2.88kN-m 1.32kN-m
= _—
1/1, N10,= 0.81 kN A D
2.88kN-m 1.32kN-m
" o
3kN aoD,= 0.81 kN
5.78 + 2.88 1’“ L7 il
= ——————=1.73kN
5
xzwzomk,v SF,=0; R=173kN — 0.81 kN = 0.92kN
Theory of Structures-DWE-3321 26
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Sway Solution : We will arbitrarily assume the FEM to be 100 kRN.m

Theory of Structures-DWE-3321

-
-
A, =28kN tD,

ANBA
COLLEGE OF ENGINEERING

80 kN-m

=28 kN

6ETA
M==5= > (FEM)s = (FEM), = (FEM)cp = (FEM)pc = ~100kN-m
Joint | A B 3 D = 2,
Member| AB BA BC CB CcD DC H CH R’
B| \ '_.'->
DF | 0 [ 05| o5 05| 05| o o T |
FEM |-100 |-100 —100 |-100 o/ -
X < < 1] /
Dist. 0 | S0 J 50 | 50 ! I — =
cO 25 25 25 25 1 | 60 kN-m
Dist. 125 [-125 0 -125|-125 All D
CO |-625 —6.25 7|-6.25 —6.25 ‘ '
Dist. 3125 3250 3.125| 3.2 ~ ~ sm
CO | 156 1.56 “|* 1.56 1.56| —100kN-m  —100kN-m
Dist. -0.78 |-0.78 |-0.78 | —0.7
CO |-03 ~0.39 71~0.39 ~0.39 YN
Dist. 0195 0.195| 0.195| 0.193 ——
SM | —80.00/-60.00| 60.00 | 60.00 |—60.00|—80.00 t
ZF, =0, R' = 28 + 28 = 56.0 kN

Total / Final Solution = NoSway + Modified Sway Solutions

Mup =288 + 22(—80) = 1.57kN-m Ans.
Mgy = 578 + £5(—60) = 479kN-m Ans.
Mpc = =578 + 225(60) = —4.79 kN -m Ans.
Mcg = 272 + 2%(60) = 3.71kN-m Ans.
Mep = =272 + 2%(—60) = —3.71 kN +m Ans.
Mpe = —1.32 + 222(—80) = —2.63kN-m Ans.
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Example : Determine the moment at the joints of the frame shown in the figure. &
The moment of inertia (s indicated. ‘Iﬂ;
iU Al des

Solution :

¢/t 2 k/ft

-—
-—

-
—

B R

Igc= 1500 in*

> x
—
SU1000Z = 4V

Ipc =2500in*

l

D

@) (b) (©)

Theory of Structures-DWE-3321 29

No-Sway Solution :

w2 Zx 122 wil? 2x 122
FEMpc = “12 == 12 =—24k.ft FEMcp = 12 = 12 =24k.ft COLLEGE OF ENGINEERING
2 k/ft
4E(2000) 4E (1500 3E(2500)
C
Joint A B C D
DF4;=0 Member, AB BA BC CB | €D |"'DC
S00E DF 0 0.615 | 0.385| 0.5 0.5 1 A
DFsa = 5508 + 5008 ~ 1% | FEM -24 | 24
500E Dist. 14.76 | 9.24 12 —12 D
DFge = ——————=10.385 CO | 7.38 -6 4.62
800E + 500E Dist. 3.69 | 2.31-231 | —2.31 l ‘
500E CcO 1.84 — 16l 116 1934 k-ft ¥ 15.00k-ft
DEes = gopr—r=ooe =05 (NSNS 0.713| 0447,-058 | —0.58 T TF
500E CO | 0.357 -0.29°| 0.224
DFp=——————=105 Dist. 0.18 | 0.11 [—-0.11 | —0.11
500F + 500F 10 IS ft
ZM | 9.58 | 19.34 | —19.34 15.00 |—15.00[ O :
DFpc =1 = w 9.58 k-ft
2F, =0 R =289-1.00= 189k _fx‘:mk ‘
Theory of Structures-DWE-3321 30

r—l), =1.00k
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Sway Solution :
6EIA 6E(2000) A’
FEM = (FEM =——=- 5
( )ag = ( )BA 12 (10)?
3EIA 3E(2500) 47
(FEM)cp = =5~ = = :
L (15)
Assuming the FEM for AB is -100 k.ft, the corresponding
FEM at C, causing the same A iz found by eomparison, i.e.,
(—100)(10)? (FEM)cp(15)?
6E£(2000) a 3E(2500)
(FEM)cp = —27.78 k - ft
Theory of Structures-DWE-3321 31

Joint A B C D l
Membert AB | BA | BC | CB | CD | DC ap iRt JE 2331 k-ft

DF 0 0.615 | 0.385| 0.5 0.5 1 COLLEGE OF ENGINEERING

FEM |—-100 | —100 —27.78

Dist. 61.5| 38.5 |13.89 | 13.89 _

co |30.75 6.94719.25 L 15 fi

Dist. —4.27| —2.67.-9.625] —9.625 ’

CO |-2.14 —4.81'1—-1.34

Dist. 296, 1.85) 0.67 0.67 ) o 69.91 k-ft

Cco | 148 0337 0.92 s L T

Dist. —0.20] —0.13 |-0.46 |—0.46 « D' =155k

ZM |—69.91|—40.01| 40.01 | 23.31 |—23.31 0 f

1,80 ) 2F,=0; R' =110 + 1.55 = 1255k
M 4 = 9.58 + (,2"_55)(—69.91) = —0.948 k - ft
Mpa = 1934 + ($5%)(—40.01) = 133k ft
Mpc = —19.34 + ({55)(40.01) = —13.3k - ft
Mcp = 15.00 + ({5%)(23.31) = 18.5k - ft
Mcp = —15.00 + ({5%)(—23.31) = —18.5k - ft
Theory of Structures-DWE-3321 32
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Example : Determine the moment at the joints of the frame shown in the figure.
El (s constant.

COLLEGE OF ENGINEERING
Solution :

(a) (b) (c)

Theory of Structures-DWE-3321 33

No-Sway Solution :

8(10) . 8(10)
(FEM)pc = ——2— = —10k-ft  (FEM)cs = —— = 10kt
Joint A B C D
Member| AB BA BC CB cD DC
DF 1 0.429 | 0571 | 0571 | 0.429 1
FEM —-10 10
Dist. 4.29 5714 =5.71| —4.29
cO -286° 2.86
Dist. 1.23 163 —1.63] —1.23
CcO -082°1 082
Dist. 035 | 047 —047| —0.35
CcO -024T 024
Dist. 0.10 | 0.13] —0.13| —0.10 A,
M 0 597 | =597 | 597 | -597| o 6 ft— L6 ft
4k 4k
(+ZMp = 0: -597 + A(8) — 4(6) =0 A, =375k
(+ZM. = 0; 597 - D,(8) + 4(6) =0 D, =375k
Thus, for the entire frame,
SF,=0: R=375-375+20=20k
Theory of Structures-DWE-3321 34
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Sway Solution :
6EI(1.24')/(10)%

—100k-ft, then equating A’
(FEM)gc = (FEM)cp = 240k - ft.

(FEM)p, = (FEM)cp = —3EIN'/(10)*. (FEM)gc = (FEM)cp =

If we arbitrarily assign a value of (FEM)g, = (FEM)cp =

in the above formulas vields

Joint A B (6 D
Member| AB BA BC CB cD DC
DF 1 0429 | 0571 | 0571 [ 0429 | 1
FEM —100 | 240 [240 [-100
Dist. —60.06|—79.94 | -79.94 | —60.06
CcO -39.97-39.97
Dist. 17.15] 22.82) 22.82| 17.15
CcO 114177 11.41
Dist. -4.89| —-6.52) —-6.52| —4.89
CcO -326| —-3.26
Dist. 140/ 186 1.86 1.40
CO 0937 093
Dist. -0.40| —053| —0.53| —0.40
SM 0 [-146.80| 146.80 | 146.80 [-146.80| 0
Theory of Structures-DWE-3321 35
29.36 k 20.36 k
146.80 k - ft
10 ft R 146.80 k - ft
¥ Y > V= ¥
— C
8 ft %46.80 k-ft "k_‘(,_g() K - ft 8 fit
29.36k 29.36 k
e 2 p,
6 ft—
-6 ft
29.36 k 29.36 k
(+3SMp=0: —AL8) +29.36(6) + 146.80 =0 A, = 4037k
(+SMc=0; —Dy(8) +29.36(6) + 14680 =0 D, = 4037k
Thus, for the entire frame,
SF, = 0; R’ = 40.37 + 40.37 = 80.74 k
Mps = 597 + (593)(—146.80) = —30.4 k - ft
Mpc = =597 + (5753)(146.80) = 30.4 k- ft
Mcp = 597 + (50%:)(146.80) = 423k - ft
Mcp = —5.97 + (595)(—146.80) = —423k - ft
Theory of Structures-DWE-3321 36
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